MASSACHUSETTS
"INSTITUTE OF
TECHNOLOGY

" LABORATORY FOR
COMPUTER SCIENCE

e
. MIT/LCS/TR-490

AD-A228 113

- DISTRIBUTED -ALGORITHM
SIMULATION USING .
INPUT/OUTPUT AUTOMATA

Kenneth J. Goldman

Scptmnbér 1990

.,

J

545 TECHNOLOGY SQUARIC; CAMBRID&E, MASSACHUSETTS 02139

Unclassified
SECURITY CLASSIFICA

TION OF THIS PAGE

REP

ORT DOCUMENTATION PAGE

ta. REPORT SECLURITY CLASSIFICATION
Unclassified

1B RESTRICTIVE MARKINGS

23. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

is unlimited.

discribution

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TR 490

5. MONITORING ORGANIZATION REPORT NUMBER(S)

NOOO014-83-K-0125

6a. NAME OF PERFORMING QRGANIZATION

MIT Lab for Computer Science

6b. OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

Office of Maval Research/Dept.

of

NMavy

6c. ADORESS (City, State, and ZIP Coge)

545 Technelogy Squar
Carcbridge, MA 02139

7b. ADDRESS (City, State, and 2IP Code)

Information Systems Program
Arlingzon, VA 22217

8a. NAME OF FUNDiNG/ SPONSORING
ORGANIZATION
DARP A, 20D

(f

8b. OFFICE SYMBOL

applicanle)

9. PROCUREMENT iNSTRUMENT IDENTIFICATION NUMBER

8¢. ADDRESS (City, State, anag 2IP Coce)

1400 Wilscn 31lvd.

s ey mAn-
Ariingnexn, VA 2210

10. SOURCE OF SUNDING NUMBERS

PROGRAM PROJFTT
ELEMENT NO NO.

TASK
NO

WORK UNIT
ACCESSION NO.

11 TITLE (Inciuge Securrty Ciassification)

Distributed Algorithm Simulation Using Input/Output Automata

12, PERSONAL AUTHORI(S)

Kenneth J. Goldman

‘3a. TYPE OF REPORT
Technical

13b TiIME COVERED
FROM

14. DATE OF REPORT (Year, Month, Day)
70 1990

243

Sprtomhor

15 PAGEZ COUNT

6. SUPPLEMENTARY NOTATION

COSATI CCDES

FIELD | GROuP | $UB-GROUP

! !

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block numoper)
Distributed systems, distributed algorithms, formal model,

' I/0 automata, programming languages, simulation, program visu
! izarigr alogri+hm develonment

Abstract: We present the Spectrum

and study of distributed algorithms.

their executions.

‘9 ABSTRACT (Continue on reverse if necessary and ldennfyﬁoy biock number)

1/0 autornata and simulate them directly in terms of the semantics of that model. This per-

mits integration of algorithm specification, design, debugging, analysis, and proof of correctness

provides a language for expressing algorithms as 1/0 automata. a simulator for generating algo-

rithm executions. and a graphics interface for constructing systems of automata and observing

Simulation System. a new research tool for the design

Based on the formal Input/Output automaton model

of Lynch and Tuttle, Spectrum allows one to express distributed algorithms as collections of

within a single formal framework that is natural for describing distributed algorithms. Spectrum

L

@

correptroess nroafs snared mgTory,

"‘u’
*}‘ r"
3P

%

-.’5"

20 DISTRIBUTION / AVAILABILITY OF ABSTRACT
[3 UNCLASSIFIED/UNLIMITED [SAME AS RPT

21, ABSTRACT SECURITY CLASSIFICATION

OJ otic UsERS Unclassiii

223 NAME OF RESPONSIBLE INDIVIDUAL
Carol Nicolcra

iZie
22b TELEPHONE (include Area Code)
(617) 253-5894

22¢. OFFCE SYM

BOL

1-

DD FORM 1473, 8a var

83 APR ed:tion may oe uses until exhaustea.

SECURITY CLASSIFICATION OF

THIS PAGE

Ali other editions are obsoiete

90 10

a0
¢ P nS

&

Cncl ass:.z;e:

S Government Printing Offies: 1988807047

18. mutual exclusion, linearizability, superposition, global snapshot, multicast,
synchronization, distributed simulation.

19. We show that the properties of the I/O automaton mode] provide a solid foundation for
algorithm development tools. For example, using I/O automaton composition, Spectrum users
may define composed types hierarchically, study simulations at varying levels of detail, and
create specialized debugging and analysis devices. These devices, called spectators, are written
in the Spectrum language just as any other system component, and can monitor algorithm
executions for correctness and performance without interfering with the algorithm.

The system is designed to support experimentation with algorithms. For example, the
system separates algorithms {rom the system configurations in which they are to run, allowing
users to vary them independently. Also, the message system may be modeled explicitly as an
automaton. pernitting users to study algorithms under different communications assumptions

simply by substituting one automaton for another.

Motivated by a desire to broaden the class of algorithms that may be studied using Spectrum,
we propose two extensions to the I/O automaton model. First, we extend the I/O automaton
model to allow modelling of shared memory systems, as well as systems that include both shared
memory and message passing communication. This extension supports description. verification.
and analysis of shared memory systems. As an example, Dijkstra’s classical shared memory
mutual exclusion algorithm is presented and proved correct. In addition. we illustrate how
the extended model provides a unified formal framework in which shared memory systems and
message passing systems may be related. Second, we extend the I/O automaton model with
a superposition operator that permits system modules to be combined in layers so that higher
layers may observe {but not modify) the variables of lower lavers. We show that superposition
does not affect the set of executions of the underlving module, thus preserving all properties
of that module. A formal specification mechanism is presented that allows the set of correct
behaviors of the higher level module to be expressed in terms of the states of the underlying
module. As an illustration of the superposition extension, the global snapshot algorithm of
Chandy and Lamport is presented with a complete proof of correctness. For both of these
model extensions, we propose corresponding extensions to the simulation system.

The final cont~ibution of this thesis is a distributed algorithm that may be used to achieve
distributed simulation of algorithms written as 1/O automata. The algorithm solves a new
synchronization problem. logically synchronous multicast, that captures the synchrouization

semantics of the /0 automaton model.

Distributed Algorithm Simulation
Using Input/Output Automata

by
Kenneth J. Goldman

S.M. ELCS, Massachusetts Institute of Technology (1987)
Sc.B. Computer Science, Brown University (1984)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

' Accesslon Pop

| NTIS QRA&I
DTIC TAB

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY-B
Y.
Distribution/
Availability Codes
Avail and/orp

September 1990
Dist Special

(© Massachusetts Institute of Technology 1990 I

..

Signature of Author
Department of Electrical Engineering and Computer Science
July 16, 1990

Nancy A. Lynch

..

Certified by
Professor
Thesis Supervisor

Arthur C. Smith

Accepted by
Chairman, Departmental Committee on Graduate Students

A\

"

o SR

Distributed Algorithm Simulation
Using Input/Output Automata
by
Kenneth J. Goldman

Submitted to the Department cf
Electrical Engineering and Computer Science on July 16, 1990

in partial fulfillment of the requirements for the degree of

77 Dodet et Doctor of Philosophy in Computer Science
Abstract: We presents"the Spectrum Simulation System. a new research tool for the design
and study of distribsted algorithms. Based on the formal Input/Qutput automaton model
of Lynch and Tuttle, Spectrum allows one to express distributed algorithms as collections of
I/O automata and simulate them directly in terms of the semantics of that model. This per-
mits integration of algorithm specification, design, debugging, analysis, and proof of correctness
within a single formal framework that is natural for describing distributed algorithms. Spectrum
provides a language for expressing algorithms as I/0 automata, a simulator for generating algo-
rithm executions, and a graphics interface for constructing systems of automata and observing
their executions.

‘,J-Wé showr\izhat the properties of the I/O automaton model provide a solid foundation for
algorithm development tools. .For example, using I/O automaton composition, Spectrum users
may define composed types hierarchically, study simulations at varying levels of detail, and

create specialized debugging and analysis devices. These devices, called spectators, are written

in the Spectrum language just as any other system component, and can monitor algorithm

L

[
/

e+

executions for correctness and performance without interfering with the algorithm. AN
The system is designed to support experimentation with algorithms. For exainple, the‘ |
system separates algorithms from the system configurations in which they are to run, allowing
users to vary them independently. Also, the message system may be modeled explicitly as an
automaton, permitting users to study algorithms under different communications assumptions

simply by substituting one automaton for another.

Motivated by a desire to broaden the class of algorithms that may be studied using Spectrum,
we propose two extensions to the I/O automaton model. First, we extend the I/O automaton
model to allow modelling of shared memory systems, as well as systems that include both shared
memory and message passing communication. This extension supports description, verification,
and analysis of shared memory systems. As an example, Dijkstra’s classical shared memory
mutual exclusion algorithm is presented and proved correct. In addition, we illustrate how
the extended model provides a unified formal framework in which shared memory systems and
message passing systems may be related. Second, we extend the I/O automaton model with
a superposition operator that permits system modules to be combined in layers so that higher
layers may observe (but not modify) the variables of lower layers. We show that superposition
does not affect the set of executions of the underlying module, thus preserving all properties
of that module. A formal specification mechanism is presented that allows the set of correct
behaviors of the higher level module to be expressed in terms of the states of the underlying
module. As an illustration of the superposition extension, the global snapshot algorithm of
Chandy and Lamport is presented with a complete proof of correctness. For both of these
model extensions, we propos~ corresponding extensions to the simulation system.

The final contribution of this thesis is a distributed algorithm that may be used to achieve
distributed simulation of algorithms written as I/O automata. The algorithm solves a new
synchronization problem, logically synchronous multicast, that captures the synchronization

semantics of the I/0 automaton model.

Keywords: Distributed systems, distributed algorithms, formal models, I/O automata, pro-
gramming languages, simulation, program visualization, algorithm development, correctness
proofs, shared memory, mutual exclusion, linearizability, superposition, global snapshot, mul-

ticast, synchronization, distributed simulation.

Thesis supervisor: Nancy A. Lynch

Title: Professor

Acknowledgments

I could not have asked for a better research advisor than Nancy Lynch. She has been a
constant source of research ideas, and has provided direction and encouragement at all the right
moments. Nancy is a co-author of Chapter 7, and has been involved with the details of many of
the other chapters. I also thank the other members of my thesis committee, Baruch Awerbuch
and Bill Weihl, whose comments have contributed to the quality of this thesis.

The work in Chapter 7 on proofs for shared object systems is joint work with Kathy Yelick.
I also thank Kathy for her careful reading of the remainder of that chapter.

Many of the past and present members of the Theory of Distributed Systems research group
have contributed to this thesis, and all have made this group an exciting place to do research.
I thank Christopher Colby for implementing the Spectrum user interface, and for his patience
when I would occasionally decide to change the specification. I thank John Leo, Stephen
Ponzio. and Mini Gupta for their comments on using the Spectrum Simulation System. In
addition, I thank thank Alan Fekete for several discussions during the early part of this work,
Jennifer Welch and Mark Tuttle for their detailed comments on both the technical details and
the presentation of the logically synchronous multicast algorithm, and Hagit Attiya for several
technical discussions. Also, I thank Anna Wiseman for taking care of all that paperwork.

I am grateful to Tom Miller and Paris Kanellakis, who introduced me to computer science
research and were influential in my decision to attend graduate school.

I thank my parents, Lester and Judy, for all the love and support they have given me during
the past 27 years. I thank the rest of my family for their moral support, and for not asking
too many times when I would graduate. In particular, I thank my aunt and uncle, Phyllis and
Alfred Schneider, for being a second family to me during my stay in the Boston area. I thank
my in-laws, Robert and Marilyn Goldwasser, for their frequent phone calls and visits, for their
words of encouragement, and especially for their daughter.

This thesis would not have been possible without the help of my wife, Sally. I thank her
for emotional and technical support, for taking on extra responsibilities whenever I faced a
deadline, and for never doubting once that we would finish at the same time. Finally, I thank

our son, Mark, for providing energy, excitement, and humor whenever it was needed most.

This research was supported in part by the National Science Foundation under Grant CCR-
86-11442, by the Office of Naval Research under Contract N00014-85-K-0168, by the Defense
Advanced Research Projects Agency (DARPA) under Contract N00014-83-K-0125 and Contract
N00014-89-J-1988, and by an Office of Naval Research graduate fellowship.

Contents

1 Introduction

1.1 Distributed Algorithms. .
1.2 Design Goals
1.3 Thesis Overview
2 The Model

2.1 I/O Automata
2.2 Composition
2.3 Fairness
2.4 Problem Specification . .
2.5 Alternative Models

251 CSP

252 UNITY

2.5.3 Statecharts
2.6 Summary

3 The Spectrum Language
3.1 Theoretical Foundations

3.2 A Separation of Concerns

3.3 Language Constructs . . .
3.3.1 DataTypes
3.3.2 Action Types . . .

3.3.3 Automaton Types

...............................

...............................

...............................

...............................

...............................

...............................

...............................

...............................

...............................

...............................

...............................

...............................

13

17
21

23
23
25
26
27
28
28
29
30
31

3.4
3.5

3.6

The
4.1
4.2
4.3
4.4
4.5

5.3

CONTENTS

Example, 49
Support for Verification. Analysis. and Visualization 51
35.1 StatelInvariants. L L 51
352 Spectators e e e e 52
3.53 Pseudovariables L o 54
Summary 35
Spectrum Simulator 59
The Loader e e 60
The Interpreter e e 62
The Execution Loop e 62
The Scheduler. 65
Summary e 66
Spectrum User Interface 89
Overview of the Spectrum Interface. 70
Configure Mode e 71
321 TheTypesMenu o 71
322 TheEditMenu 72
5.2.3 Automaton Instances 72
5.2.4 Configuration Edges 0oL 73
5.2.5 Creating Composed Types 73
5.2.6 Summary Mappings e 74
52.7 UndoandRedo oL, 74
5.2.8 Saving and Loading Files 75
529 DataStructures. e 75
Simulate Mode e e 76
53.1 The Simulate Menu, 76
5.3.2 The Running Simulation. 77
533 StateWindows L e 78
53.4 ExecutionRollback. 78

CONTENTS 9

5.3.5 Error Messages During Simulation T8
536 TraceFiles 79

54 Summary ... oL e e 79
8 System Evaluation 81
6.1 Comparisons with Related Systems 81
6.1.1 Occam e 82
6.1.2 UNITY 83
6.1.3 Statemate e e e 85
6.1.4 DEVS . . . e 86

6.2 Design Goals Revisited 87
6.2.1 Spectrum and the [/O Automaton Model 87
6.2.2 Expressive Power 89
6.2.3 Experimentation e 91
6.2.4 Economy and Integration, .. 94

6.3 Summary e e e 95
7 Shared Memory 97
7.1 Shared Memory Definitions 101
7.1.1 Variables 101
7.1.2 Shared Memory Actions L L. 102
7.1.3 Shared Memory Automata 103
7.1.4 Augmentation and Augmented-Composition 106
7.1.5 The Closeout Operator 110
7.1.6 Closeout for behaviors 112
7.0.7 Discussion L e e e e e e e e 114

7.2 Example: Dijkstra’s mutual exclusion algorithm 115
7.2.1 The Mutual Exclusion Problem 115
7.2.2 Dijkstra’s Mutual Exclusion Algorithm 117
7.23 Safety Proof 120

724 ProgressProof 123

Proofs for Shared Object Systems . . .
Invocation-Response Systems

7.3.2 Simulating Atomic Access Systems with IR Systems

i

Supporting Shared Memory in Spectrum

-)

Ut

Superposition
Superposition Extensions
Unconstrained Automata
8.1.2 Superposition
8.1.3 Partial Execution Modules
Superposition for Partial Executions
Example: Global Snapshot
Problem Specification
8.2.2 The Algorithm
8.2.3 Proof of Correctness
8.3 Supporting Superposition in Spectrum

8.4 Summary

Distributed Simulation

The Problem

The Algorithm
Proof of Correctness
Safety Proof
9.3.2 Liveness Proof
Complexity Analysis

Message Complexity
9.4.2 Time Complexity

9.4.3 Possible Optimizations

CONTENTS

CONTENTS

9.5 Summary and Discussion L e e e e e

10 Conclusion

A Language Syntax

B Functions
B.1 Generic . .
B.2 Integers . .
B.3 Booleans . .
B.4 Strings . . .

.......................................

.......................................

.......................................

B.5 Configuration Data e

B6 Sets

B.7 Multisets .
B.8 Sequences .
B.9 Mappings .
B.10 Conditionals

Bibliography

......................................

.......................................

.....................................

......................................

11
219

223

227

12

CONTENTS

Chapter 1

Introduction

We are experiencing a dramatic increase in the use of computer communication in both our
professional and personal lives. A global electronic infrastructure is fast becoming a reality, and
is bringing with it sweeping changes in the way people communicate, do business, and conduct
their daily lives. Electronic communication for mail, information exchange, and financial and
consumer services are becoming commonplace. And the continued proliferation of distributed
computing will undoubtedly inspire new uses for the technology. These applications will bring
increased demands for software performance and reliability, as well as an abundance of new
software for distributed computing.

Distributed algorithms will be at the heart of this new software. Distributed algorithms are
the protocols by which the computers in a distributed system cooperate towards the solution
of a problem. Unlike sequential algorithms, used to solve problems on a single processor,
distributed algorithms must cope with arbitrary communication delays and both processor and
communication failures. The fact that communication delays are unpredictable means that
distrituted algorithms must also cope with arbitrary interleaving of processor steps. Since a
given program’s computation may unfold nondeterministically, designing and reasoning about
distributed algorithms is inherently difficult. Therefore, researchers have turned to formal
models of distributed systems in order to reason about their algorithms. For example, the
I/O automaton model of Lynch and Tuttle [47, 48] is particularly well suited for the study
of distributed algorithms; it allows one to state natural correctness conditions, give precise

algorithm descriptions, and construct careful correctness proofs.

13

14 CHAPTER 1. INTRODUCTION

We claim that formal models are important not only as a means to analyzing and proving th«
correctness of distributed algorithms, but also as the basis of software tools for designing better
algorithms. The aim of this thesis is to demonstrate how distributed algorithm specification,
design, debugging, analysis, and proof of correctness may be integrated within a single formal
framework that is natural for describing a wide range of distributed algorithms. Such integration
not only saves one from translation between different models and languages, but also allows facts
discovered during simulation and debugging to be more easily incorporated into the correctness

proof, and allows properties used in the proof to be checked mechanically during simulation.

We present the Spectrum Simulation System, a new research tool for the design and study of
distributed algorithms. Spectrum consists of a programming language and simulator based on
the I/O Automaton model. Users express distributed algorithms as collections of I/O automata
and simulate them directly, in a way that is faithful to the semantics of the formal model. A
graphical user interface is provided for constructing systems of automata and animating their
executions. In presenting the system, we describe how the salient features of the I/O automaton
model provide a solid foundation for distributed algorithm development tools. For example,
using I/O automaton composition, Spectrum users may define composed types hierarchically,
study simulations at varying levels of detail, and create specialized debugging and analysis

devices.

The Spectrum implementation is faithful to the original I/O automaton model, as presented
by Lynch and Tuttle. This model is particularly well suited for describing collections of asyn-
chronous processes that communicate through message passing. However, not all distributed
algorithms are best described using private local state and message-passing communication. It
is sometimes convenient to describe a distributed algorithm as a collection of processes that
communicate through shared variables, or as a collection of system layers, arranged so that each
layer makes use of the internal states of lower layers. With a view towards broadening the class
of algorithms to which our simulation system is applicable, we present two extensions of the
1/O automaton model. The first extension permits automata to communicate through atomic
accesses to shared variables. The second extension, called superposition, allows programs to be
constructed in layers, such that higher layers may observe the internal states of lower layers.

We propose new language constructs and simulation system enhancements to support each of

1.1. DISTRIBUTED ALGORITHMS 15

these model extensions.

Another contribution of this thesis is the formulation of a general problem called logically
synchronous multicast and a highly concurrent protocol to solve it. We show how this protocol
could be used in the Spectrum Simulation System to achieve distributed simulation of algorithms
expressed as I/O automata.

We now turn to a brief introduction to distributed algorithms. Following this, we present
the design goals for the Spectrum Simulation System, and draw distinctions between simulation
systems and other sorts of software development tools. The chapter concludes with an overview

of the thesis.

1.1 Distributed Algorithms

A distributed system consists of a collection of geographically separated computers linked to-
gether by a network. In general, the network topology, the arrangement of communication links
between processors, may be arbitrary. Processes, program threads running on the computers,
may communicate with each other by sending messages over the network, but do not have any
other means of communication, such as a shared memory. Processes are autonomous, meaning
that they determine when to send messages to other processes. That is, a process cannot pre-
vent another process from sending a message. Processes do not have synchronized clocks, and
their instruction execution rates may differ. This implies that processes are asynchronous; their
steps may be arbitrarily interleaved. Network communication is also asynchronous, meaning
that the acts of sending and receiving a message are separated (often arbitrarily) in time.
Like any computer system, distributed systems are prone to failures. However, unlike cen-
tralized systems, portions of a distributed system may continue to be useful while other portions
are “down.” We classify the types of failures that may occur in a distributed system into pro-
cess failures and communication failures. Process failures range from simple stopping faults
(crashes) to malicious faults, in which faulty processors attempt to corrupt the computation of
the rest of the system by sending incorrect or conflicting messages. If we assume that a com-
munication link is supposed to deliver each message exactly once and in the order sent, then
communication failures may involve losing messages, reordering messages, delivering messages

that were never sent, or delivering messages multiple times.

16 CHAPTER 1. INTRODUCTION

In order to coordinate the activities of processes in a distributed system, it is necessary to
have agreed-upon protocols. These protocols are called distributed algorithms. Typical problems

solved by distributed algorithms include:

o leader election: Choose exactly one distinguished “leader” process (to coordinate some

computation).

o mutual exclusion: Grant permission for the use of a shared resource (e.g., a printer) in

response to user requests so that no two users have permission simultaneously.

e global snapshot: Construct a recent consistent picture of the state of the entire system (as

in an audit of a distributed banking system).

Distributed algorithms are usually designed with particular assumptions about the under-
lying system in mind. For example, one might assume that the only process failures are crash
failures and that all messages sent eventually arrive. In addition to failure assumptions, one
might make assumptions about the network topology or about the existence of unique process
identifiers. The set of assumptions makes a great impact on the algorithmic solution. It is often
interesting to consider what happens when an algorithm’s assumptions are violated. For exam-
ple, consider a distributed algorithm designed with the assumption that messages are delivered
in order. Depending on the particular algorithm, delivering messages out of order might cause
the algorithm to produce an incorrect result, might have no effect whatsoever, or might cause
the algorithn. to produce a correct result but with degraded (or superior!) performance.

The particular combination of process and communication failures that an algorithm must
tolerate forms part of the problem specification. A specification is usually presented in terms of
the input/output relationship between the algorithm and its environment. Since an algorithm
has no control over its environment, a problem specification usually says that an algorithm
will satisfy certain safety and liveness conditions, provided that its inputs are well-formed.
The safety conditions essentially say that the algorithm never does anything “wrong”, and
the liveness (progress) properties essentially say that the algorithm eventually does something
“right”. An algorithm is said to be correct if it satisfies both the safety and liveness conditions

(whenever its inputs from the environment are well-formed).

1.2. DESIGN GOALS 17

We need formal models to help overcome the inherent difficulty of designing distributed
algorithms that stems from the arbitrary interleaving of process steps. Informal arguments
and software testing are inadequate substitutes for formal methods, since anything short of a
complete proof is likely to miss “bad™ executions — executions in which the particular choice of
process step interleaving leads to the violation of safety or liveness requirements. Formal models.
such as the I/O automaton model. are useful for stating problem specifications, describing
algorithms precisely, and constructing careful proofs of correctness. However, formal proofs of
correctness are often long, hard, and tedious. If an algorithm is incorrect, much effort can be
wasted in attempting to prove its correctness. Testing can help one to discover many errors
in algorithms quickly and easily, before delving into a correctness proof. Furthermore, simply
constructing a correctness proof for an algorithm may not reveal enough intuition into how the
algorithm works in order to lead to improvements in the algorithm. For these reasons, it is
important to have research tools for simulating distributed algorithms.

Simulation allows one to test and debug algorithms, and can reveal intuition that is helpful
in understanding algorithms and constructing correctness proofs for them. In conjunction with
appropriate graphical visualization techniques, simulation facilitates the study of algorithm
performance under varying conditions, something not easily done in the context of a proof. But
because successful testing alone is not sufficient cause to believe that an algorithm is correct, one
must still construct a correctness proof as part of the algorithm development cycle. Therefore,
it is important that the semantics of the simulation language be consistent with the formal
model in which the proof is to be constructed. In addition, using an appropriate formal model
as the basis of a simulation tool leaves open the possibility of integrating the entire algorithm
development process: specification, design, debugging, analysis, and proof of correctness. The
purpose of this thesis is to demonstrate how this can be achieved. We now elaborate on the

design philosophy behind the Spectrum Simulation System.

1.2 Design Goals

We have said that the aim of this work is to construct a research tool for the design and
study of distributed algorithms that integrates theoretical modelling techniques with algorithm

simulation, visualization, and testing. In this section, we become more specific about this

18 CHAPTER 1. INTRODUCTION
objective. In designing any software tool, it is important to formulate and adhere to a set of
design principles. The philosophy behind the Spectrum simulation system is described by the
design principles that follow. We argue generally for the importance of each principle, and

describe lower-level design goals that follow naturally from them.

The design must be faithful to a formal model. Since our aim is to integrate theoret-
ical modelling techniques with algorithm simulation, the simulation language and its semantics
(as well as the implementation of the simulator) must remain faithful to the formal model. Any
departure from the formal model jeopardizes effective integration of the two. For example, it
is only possible to mechanically check executions of an algorithm against properties stated in
the proof if the semantics of the simulation match the semantics of the model. By remaining
faithful to a theoretical model. we also benefit from having a well-defined semantics on which
to base the language and implementation. Of course, we must choose a sufficiently simple
model so that the resulting language mechanisms encourage writing straightforward algorithm
descriptions, and so that the resulting simulations are easily comprehended. This brings us to

the next design principle.

The language should be natural for expressing a large class of distributed algo-
rithms. This design principle has as much to do with the choice of a formal model on which
the language is based, as it has to do with the design of particular programming language
constructs. The inherent properties of distributed algorithms and systems lead us to the fol-
lowing specific requirements. The model and language should reflect the fact that processes in
distributed systems generate outputs autonomously and may receive inputs at arbitrary times.
Also, since distributed algorithms can be designed with many different communication assump-
tions, the system should provide support for varying these assumptions. Therefore, one should
be able to model communication mechanisms explicitly. Many distributed algorithms make
use of unbounded state, such as message counters or history information. In order not to rule
out such algorithms, we require that the language allow processes to have infinite state sets
(in principle). Finally, we require that the language have built-in data types and control flow

mechanisms that are convenient for describing distributed algorithms.

The language and simulation system should encourage experimentation. Often,

a researcher does not know exactly where to look for new insights, but discovers them through

1.2. DESIGN GOALS 19
a process of exploration and experimentation. It is important that a research tool facilitate this

process. This principle implies a number of specific design goals:

1. The write/simulate/modify cycle should be short. That is, the length of time required to

modify an algorithm and start the simulation should be small.

2. The language should provide mechanisms for modularity, so that algorithm components
may be studied individually or replaced with other components. This modularity should
have a hierarchical structure, so that simulations can be studied at different levels of detail.
In addition, the system should support writing user-defined debugging and analysis tools

as separate modules.

3. Logically independent concerns should be orthogonal. It should be possible to modify
each of the following aspects of a simulation independently: the algorithm being studied,
the system configuration, the control of visualization, and the mechanisms for debugging
and analysis. Extraneous information for the configuration, visualization, and debugging

should not clutter up the algorithm code or interfere with its execution.

4. User effort should be focused on experimenting with algorithmsrather than finding obscure
program errors. This means providing a statically type-checked language with a rich set

of built-in data types.

5. Flexible mechanisms should be provided for controlling and studying executions. For
example, the system should provide automatic detection of invariant violations, flexible
and simple graphical mechanisms for configuring systems and controlling visualization, a
choice of scheduling options, and the ability to go backward/forward in an execution and

to generate a trace file.

In general, support for experimentation means that it should be easy to modify the algorithm
and manipulate the simulation.

Finally, it is important to design for economy and integration. In general, a system is
easier to build, learn, and use when a small set of tools provide all the necessary functionality.

The main goal here is to use the same language mechanisms for writing programs, creating

20 CHAPTER 1. INTRODUCTION
debugging tools, specifving invariants, and setting up visualization. In addition, a single graph-
ical interface should be used for both constructing the system configuration and controlling the

simulation.

The above design principles are a concise description of the design philosophy for the Spec-
trum Simulation System. Their influence is evident in the Spectrum design. We will use
these principles in Chapter 6 to evaluate Spectrum and compare it with related languages and

systems.

At this point, we should sav a few words to distinguish simulation systems from other
kinds of software development tools. The purpose of a simulation system, and Spectrum in
particular, is to generate executions of algorithms for study and analysis. The difference between
a simulation system and an animation system, such as BALSA [10. 11], is subtle but important.
In general, the purpose of an animation system is to teach an already well-understood algorithm
to others. An animation system typically has two kinds of users, those who set up the animation
and those who watch the animation in order to understand the algorithm. Animations are
typically rather involved, are constructed by embedding extra procedure calls in the algorithm
itself, and are often tailored to a particular algorithm execution or input. In a simulation system
like Spectrum, the person setting up the visualization does not necessarily fully understand the
algorithm. Since the purpose of the simulation system is to allow an algorithm designer to
experiment with the algorithm in order to understand it more fully, we are not interested
in fancy animation tricks that require special knowledge of the algorithm executions. We
want visualization techniques that are simple enough to be set up quickly, general enough
to accommodate any possible execution of the algorithm, and flexible enough to encourage
experimentation. Also, as mentioned in our design goals, we want the visualization mechanisms

to be clearly separated from the algorithm itself.

A simulation system is also not a theorem prover. A simulation system may be used to
assist in program verification by checking properties of particular executions. However, it does
not prove properties about all possible executions (as do theorem provers such as LP [21, 22]
or Isabelle [52]), and it does not perform exhaustive search to check properties of all possible

states (as does the Statemate system [26], which we will discuss later).

1.3. THESIS OVERVIEW 21

One final note of clarification is that we are primarily concerned with the simulation of
complex asynchronous algorithms on a sequential machine, with an eye to under-tanding these
algorithms and proving their correctness. A large amount of research has been done in the
area of discrete event simulation. where the emphasis is on fast simulation of algorithms with
real-time constraints in order to study their time performance. That research has emphasized
improving simulation performance through concurrency. (For example, see Misra [49].) How-
ever, despite the difference in emphasis, some ideas from discrete event simulation are relevant

to this thesis, particularly to Chapter 9 which addresses distributed simu'ation.

1.3 Thesis Overview

This thesis is divided into two parts. In the first part (Chapters 2 to 6), we present the Spectrum
Simulation System, beginning with a review of its theoretical foundations and ending with an
evaluation in terms of the design goals we have just stated. Motivated by this evaluation, the
second part of the thesis (Chapters 7 to 9) proposes several extensions to the model and system.
We now present a detailed overview of both parts of the thesis.

We have said that the Spectrum Simulation System is a research tool for the design and
study of distributed algorithms expressed as collections of I/O automata. The tool consists of
three main components, the programming language, the simulator, and the user interface. Cen-
tral to the design of Spectrum is a clear separation of automaton types, which are the different
kinds of components in an automaton system, and the configuration, which defines the num-
ber of instances of each of those types and the relationships among them. The programming
language, defined in Chapter 3, provides constructs for describing distributed algorithms as
I/O automaton types. The language provides constructs that support algorithm visualization
and mechanical checking of state invariants. [/O automaton types are separately instantiated
in order to form an automaton system configuration. The Spectrum simulator, described in
Chapter 4, provides facilities for generating executions of these automaton systems. The graph-
ical user interface, described in Chapter 5, is used both for defining the configuration and for
controlling the simulation. Spectrum is written entirely in C [34] and runs on DEC Microvax
workstations. The user interface is built on top of the X11 window system [56]. In Chap-

ter 6, we conduct an evaluation of Spectrum using the design goals described in Section 1.2. In

22 CHAPTER 1. INTRODUCTION
that chapter, we draw comparisons with related languages and systems, and reflect upon the
experiences of Spectrum users.

Motivated by the evaluation of Spectrum. Chapters 7 and 8 propose two extensions to the
I/0O automaton model in order to express (and eventually simulate) a wider class of distributed
algorithms. The first extension, shared memory, allows a collection of automata to make atomic
accesses to shared variables. This extension results in a unified model for expressing two large
classes of distributed algorithms (message-passing algorithms and shared memory algorithms).
A complete assertional proof of Dijkstra’s classical shared memory mutual exclusion algorithm
(15] is presented to illustrate the shared memory definitions. Another way to model shared state
in the I/O automaton model is to model the shared variables as /O automata that respond
to requests to access the variables. We present a general theorem that relates atomically
accessed shared memory to the asynchronous invocation-response implementation. The second
extension, superposition. allows one to describe an algorithm as a series of layers such that higher
layers may observe the internal state of lower layers. Besides adding to the expressive power
of the Spectrum language, this extension will be particularly useful for monitoring global state
invariants during simulation. To illustrate the superposition definitions. the global snapshot
algorithm of Chandy and Lamport [13] is presented with a complete proof of correctness. For
both model extensions, corresponding language and simulation system extensions are proposed.

Most of the thesis is concerned with simulation of distributed algorithms on a single se-
quential machine. Distributing the simulation, besides being an interesting exercise in itself,
can also reduce the simulation time. In Chapter 9, we define the logically synchronous mul-
ticast problem, which imposes a natural and useful structure on message delivery order in an
asynchronous system. In this problem, a computation proceeds by a sequence of multicasts,
in which a process sends a message to some arbitrary subset of the processes, including itself.
A logically synchronous multicast protocol must make it appear to every process as if each
multicast occurs simﬁlta.neously at all participants of that multicast (sender plus receivers).
Furthermore, if a process continually wishes to send a message, it must eventually be permitted
to do so. We present a highly concurrent solution to the logically synchronous multicast prob-
lem and describe how the logically synchronous multicast protocol can be used to distribute

the simulation system. Related broadcast protocols are also discussed.

Chapter 2

The Model

The I/O Automaton model {47, 48] has been chosen as the foundation of the Spectrum Sim-
ulation System primarily because it is a natural model for describing distributed algorithms.
Careful proofs using this model have been constructed using a variety of techniques for a wide
range of algorithms (for examples, see [9. 19, 24, 41. 43, 45, 46, 47. 58, 59]). In this chapter, we
present a review of the I/O automaton model adapted from [48]. Interested readers are referred
to that paper for more details. motivation. examples. and results. In the course of presenting
the model. we highlight those properties that help make the model a solid foundation for a
distributed algorithm simulation system. The final sections of this chapter compare the I/0
automaton model with related models and justify our selection of the I/O automaton model as
formal framework for the Spect:um Simu:ation System. Further discussion of our choice of this

model is contained in Chaptet 6.

2.1 I/O Automata

I/O automata are best suited for modelling systems in which the components operate asyn-
chronously. Each system component is modeled as an IO automaton, which is essentially a
nondeterministic (possibly infinite state) automaton with an action labeling each transition.
An automaton’s actions are classified as either ‘input’, ‘output’, or ‘internal’. An automaton
can establish restrictions on when it will perform an output or internal action, but it is unable

to block the performance of an input action. An automaton is said to be closed if it has no

23

24 CHAPTER 2. THE MODEL

input actions; it models a closed system that does not interact with its environment,
Formally, an action signature S is a partition of a set acts(S) of actions into three disjoint
sets in(5), out(S), and int(S) of input actions. output actions, and internal actions, respectively.
We denote by ezt(S) = in(S) U out(S) the set of erternal actions. We denote by local(S) =
out(S) U int(S) the set of locally controlled actions. An I/O automaton A consists of five

components:

¢ an action signature sig(A),
o a set states(A) of states,
e a nonempty set start(A) C states(A) of start states,

¢ a transition relation steps(A) C states(A) x acts(A) x states(A) with the property that

for every state s’ and input action 7 there is a transition (s, 7,3) in steps(A), and

¢ an equivalence relation part(A) partitioning the set local(A) into at most a countable

number of equivalence classes.

The equivalence relation part(A) will be used ir the definition of fair computation. Each class
of the partition may be thought of as a separate process. We refer to an element (s',7,3) of
steps(A) as a stepof A. If (s',7,3) is a step of A, then « is said to be enabled in s'. Since every
input action is enabled in every state, automata are said to be input-enabled. This means that
an automaton is unable to block its input.

An erecution of A is a finite sequence sg,7;,3;,...,7n,8, Or an infinite sequence
80, 71,81, 72,... of alternating states and actions of A such that (s;,74+1,3,41) is a step
of A for every ¢ and so € start(A). The schedule of an execution a is the subsequence
of a consisting of the actions appearing in a. The behavior of an execution or sched-
ule a of A is the subsequence of a consisting of external actions. The sets of executions,
finite executions, schedules, finite schedules, behaviors, and finite behaviors are denoted
ezecs(A), finezecs(A), scheds(A), finscheds(A), behs(A), and finbehs(A), respectively. The same
action may occur several times in an execution or a schedule; we refer to a particular occurrence

of an action as an event.

2.2. COMPOSITION 25
2.2 Composition

We can construct an automaton modelling a complex system by composing automata modelling
the simpler system components. When we compose a collection of automata, we identify an
output action m of one automaton with the input action 7 of each automaton having = as an
input action. Consequently, when one automaton having 7 as an output action performs =, all
automata having 7 as an action perform 7 simultaneously (automata not having 7 as an action
do nothing).

Since we require that at most one system component controls the performance of any given
action, we must place some compatibility restrictions on the collections of automata that may be
composed. A countable collection {§;},., of action signatures is said to be strongly compatible

if for all 7, j € I satisfying i # j we have
1. out(S;) N out(S;) =0,
2. int(S;) N acts(S;) = 0, and
3. no action is contained in infinitely many sets acts(S;).

We say that a collection of autoinata is strongly compatible if the corresponding collection of
action signatures is strongly compatible.
The composition § = [];c; S of a countable collection of strongly compatible action signa-

tures {§;},c; is defined to be the action signature with
o in(S) = Ujerin(S;) — Userout(S;),
o out(S) = U,erout(S;), and
o int(§) = Uierint(S;).

The composition A = [];¢; A; of a countable collection of strongly compatible automata {A;};¢;

is the automaton defined as follows:!

o sig(A) = nggl sig(A;),

'Here start(A) and states(A) are defined in terms of the ordinary Cartesian product, while sig(A) is defined
in terms of the composition of action signatures just defined. Also, we use the notation 3[i] to denote the ith
component of the state vector §.

26 CHAPTER 2. THE MODEL

o states(A) =[], states(A;),
o start(A) = [lie; start(Ay),

o steps(A) is the set of triples ($1,7,$2) such that, for all i € I, if 7 € acts(A;) then
(si(i], =, $3[1]) € steps(A;), and if * & acts(4;) then §i[i] = $3[f], and

o part(A) = Uespart(A;).

Given an execution a = §m 8] ... of 4, let a|4; (read “a projected on A;”) be the sequence

obtained by deleting 7,$; when 7, ¢ acts(A;) and replacing the remaining §; by §;[i].

2.3 Fairness

Of all the executions of an I/O automaton, we are primarily interested in the ‘fair’ executions —
those that permit each of the automaton’s primitive components (i.e., its classes or processes) to
have infinitely many chances to perform output or internal actions. The definition of automaton
composition says that an equivalence class of a component automaton becomes an equivalence
class of a composition, and hence that composition retains the essential structure of the system'’s
primitive components. In the model, therefore, being fair to each component means being fair
to each equivalence class of locally controlled actions. A fair ezecution of an automaton A is
defined to be an execution & of A such that the following conditions hold for each class C of

part(A):
1. If a is finite, then no action of C is enabled in the final state of c.

2. If ais infinite, then either a contains infinitely many events from C, or a contains infinitely

many occurrences of states in which no action of C is enabled.

We denote the set of fair executions of A by fairezecs(A). We say that 3 is a fair behavior of
A if p is the behavior of a fair execution of A, and we denote the set of fair behaviors of A by
fairbehs(A). Similarly, 8 is a fair schedule of A if 3 is the schedule of a fair execution of A, and
we denote the set of fair schedules of A by fairscheds(A).

The definitions of composition and fairness imply certain natural relationships between the

(fair) executions of a composition and the (fair) executions of the individual components. Foi

2.4. PROBLEM SPECIFICATION 27

example, the following lemma from [48] states that (fair) executions of component automata

can often be pasted together to form a (fair) execution of the composition.

Lemma 2.1: Let {A,},.7 be a strongly compatible collection of automata and let A = Il;e74;.
Suppose ¢; is a (fair) execution of A, for every ¢ € I, and suppose 3 is a sequence of actions in
acts(A) such that 8|A; = sched(a;) for every i € I. Then there is an (fair) execution a of A
such that 3 = sched(a) and a; = a|A; for every i € Z. Moreover, the same result holds when

acts and sched are replaced by ezt and beh, respectively.

2.4 Problem Specification

A ‘problem’ to be solved by an I/O automaton is formalized as a set of (finite and infinite)
sequences of external actions. An automaton is said to solve a problem P provided that its set
of fair behaviors is a subset of P. Although the model does not allow an automaton to block its
environment or eliminate undesirable inputs, we can formulate our problems (i.e., correctness
conditions) to require that an automaton exhibits some behavior only when the environment
observes certain restrictions on the production of inputs.

We want a problem specification to be an interface together with a set of behaviors. We
therefore define a schedule module H to consist of two components, an action signature sig(H),
and a set scheds(H) of schedules. Each schedule in scheds(H) is a finite or infinite sequence of
actions of H. Subject to the same restrictions as automata, schedule modules may be composed
to form other schedule modules. The resulting signature is defined as for automata, and the
schedules scheds(H) is the set of sequences 3 of actions of H such that for every module H’' in
the composition, B|H’ is a schedule of H'.

It is often the case that an automaton behaves correctly only in the context of certain
restrictions on its input. A useful notion for discussing such restrictions is that of a module
‘preserving’ a property of behaviors. A set of sequences P is said to be prefiz-closed if 3 € P
whenever both 3 is a prefix of @ and a € P. A module M (either an automaton or schedule
module) is said to be prefir-closed provided that finbehs(M) is prefix-closed. Let M be a prefix-
closed module and let P be a nonempty, prefix-closed set of sequences of actions from a set

® satisfying & N int(M) = 0. We say that M preserves P if Br|® € P whenever 8|® € P,

28 CHAPTER 2. THE MODEL
™ € out(M), and B7|M € finbehs(M). Informally, a module preserves a property P iff the
module is not the first to violate P: as long as the environment only provides inputs such
that the cumulative behavior satisfies P, the module will only perform outputs such that the
cumulative behavior satisfies P. One can prove that a composition preserves a property by

showing that each of the component automata preserves the property.

2.5 Alternative Models

The I/O automaton model is only one of a number of formal models that have been used
for reasoning about concurrent systems. A review of alternative models, with an emphasis
on techniques for proving algorithm correctness, is contained in [47]. But one’s choice of a
formal model not only influences the way in which one reasons about algorithms, but also
has a strong influence on the way in which one describes algorithms, and particularly the
ease with which this is done. Therefore, as we stated in our design goals for the Spectrum
Simulation System, it is important to be sure that one chooses a formal model that is natural
for expressing the class of algorithms one wishes to describe. In this section, we briefly describe
three popular formal models that have been used for describing distributed systems: CSP
[31]. Unity [14] and Statecharts [27, 28]. In the course of this discussion, we highlight those
differences in expressive power that led us to choose the I/O automaton model as the basis of
the Spectrum Simulation System. Here, we discuss only the formal models. We will discuss

related programming languages and systems in our evaluation of Spectrum in Chapter 6.

2.5.1 CSP

Hoare's Communicating Sequential Processes (CSP) [31] is a close relative of the I/O automaton
model. A CSP program consists of a set of processes written as sequential programs. Each
program may contain statements that attempt to send or receive data over channels connected
to other processes. The channels are synchronous, meaning that the data transfer occurs
simultaneously at both ends of the channel, only after both the sender and the receiver are at
the appropriate points in their programs. Thus, unlike in the I/O automaton model, a process

that is not prepared to receive data may block a process that is prepared to send the data. This

2.5. ALTERNATIVE MODELS 29
makes CSP unnatural for describing systems in which the individual processes are autonomous.

Many distributed algorithms have the property that different processes in a system may
be at completely different points in the execution of their protocols. In such algorithms, a
process typically must be able to service requests from other processes (such as a request for
a resource) at any time. Thus, describing a component in a distributed system as a single
sequential thread of control is rather awkward, since this sequential thread must continually
“poll” its incoming channels for such requests. Partially addressing this problem, CSP provides
a language construct that allows a process to attempt to send or receive data over multiple
channels at a given point in its program; whichever of these data transfers succeeds first is the
one executed. This is a powerful construct, but its inherent synchrony does not fit well with
the properties of a distributed system. The nondeterministic control flow and input-enabling
property of I/O automata combine to provide a more suitable mechanism for expressing this
kind of distributed algorithm.

In Chapter 6, we will discuss the Occam programming language [32. 53] based on CSP.

2.5.2 UNITY

Another programming model, UNITY (which stands for Unbounded Nondeterministic Iterative
Transformations) [14], abandons the sequential control flow of CSP in favor of nondeterministic
choice. A UNITY program consists of a set of statements that access a global shared memory.
At each step in the (infinite) execution, a statement is selected and executed. Schedules are
constrained to be fair, meaning that each statement is executed infinitely often. One may think
of each statement as a separate process, which is given fair turns to take steps. Since UNITY
programs do not terminate, the notion of algorithm termination is defined in terms of a fired
point in the execution, after which no statements cause state changes. The UNITY model has
a programming logic that is useful for constructing rigorous correctness proofs of algorithms.
To model distributed computation in UNITY, one declares variables that represent channels
and writes statements for sending and receiving data that update those variables. Since there
is no notion of an “input action” in UNITY, processes must actively read the shared variables
in order to become informed of the output of other processes. This rules out synchronous in-

terprocess communication. Modularity is a problem in UNITY because the interfaces between

30 CHAPTER 2. THE MODEL
program modules are not describable in terms of well-defined sets of actions at module bound-
aries, as in the I/O automaton model, but must be deduced from the program variables that
each component accesses. Collections of communicating processes are combined into a single
program using UNITY's union operator, which, as its name suggests, simply takes the union
of the sets of statements of the individual processes to form the new program. One may speak
informally of certain UNITY statements as belonging to a particular process, but there is no

formal notion of separate system components with their own actions and local variables.

2.5.3 Statecharts

Statecharts (27, 28} piovide a modular way to describe complex systems. Essentially, each
orthogonal component of a statechart is a finite state machine that, in response to an event,
may make a state transition and (optionall:v) generate a new event. The state of the system is
the collection of states of the components.

A complication of the statechart semantics is the notion of a chain reaction. Whenever
an input occurs, the entire system makes an atomic state transition. But since a given event
may be an input to several statechart components, a statechart may generate many new events
in response to a single input event. These new events may be inputs to still other system
components, and so on. Such a chain reaction is considered to be an atomic step of the system,
and the order in which events occur within a chain reaction is important in determining the
resulting state of the system. This sort of system behavior does not occur in the I/O automaton
model because an atomic step of an I/O automaton may involve a single input action or a single
output action, but not both. We will say more about this separation in Chapter 6.

Another important difference between statecharts and I/O automata is that statecharts are
finite state machines. This makes them amenable to graphical programming, but results in a
loss of expressive power. Since each state of a statechart component is represented explicitly, it
is difficult to use statecharts to express many kinds of distributed algorithms (e.g., those that
use unbounded counters or message buffers).

The Statemate system [26], based on the Statechart model, provides a graphical editor for
building statecharts, a statechart simulator, and automatic translation into Ada and C. State-

mate exploits the hierarchical structure of statecharts by permitting users to design anc study

26. SUMMARY 31

complex systems at varying levels of detail. And since statecharts are finite state machines,

Statemate can also provide exhaustive testing. We will discuss Statemate further in Chapter 6.

2.6 Summary

In this chapter, we described the I/O automaton model, which has proven to be a useful tool
for describing distributed algorithms and proving their correctness. In the following chapters,
we will see that many of the same properties that have contributed to the success of the model
also provide a good foundation for both a programming language and a simulation system for

distributed algorithms.

32

CHAPTER 2. THE MODEL

Chapter 3

The Spectrum Language

The three main components of the Spectrum Simulation System are the programming language,
the simulator, and the user interface. In this chapter, we present the Spectrum programming
language, whose purpose is to provide a means to express algorithms as I/0 automaton types,
the building blocks of I/O automaton systems.

The Spectrum programming language is the first executable language based on the I/0
automaton model. In the literature, the transition relations of I/0 automata typically have
been described using variants of the “precondition/effect” notation of Lynch and Tuttle [48]
based on Dijkstra’s guarded commands. In this notation, each action has a precondition that
maps each state of the automaton to a boolean value, and the action is enabled in exactly
those states in which the precondition is true. (Since input actions are always enabled, their
preconditions are taken to be true in all states.) Similarly, each action has an effect that defines
the new state of the automaton based on the action and the state from which the action occurs.
However, the notations used to express these preconditions and effects have, until now, been
rather ad hoc. Furthermore, authors usually have resorted to prose to define the data types
and initial values of state components, as well as the partition of locally controlled actions. In
contrast, the Spectrum programming language provides well-defined constructs for expressing
each of the five basic components of an I/O automaton: the signature, states, initial states,
nondeterministic transition relation, and partition of locally-controlled actions. The language
is structured to integrate these five components into an easily digestible form. For example,

state components are declared first in an automaton description, actions are rlearly marked

33

34 CHAPTER 3. THE SPECTRUM LANGUAGE
as either ‘input’ or ‘output,’ steps in the transition relation involving a particular action are
defined immediately following the appearance of that action in the signature, and a simple

construct is used to clearly divide the output actions into separate classes.

Traditionally, I/O automaton descriptions have treated action “arguments” as part of the
action name, allowing a given automaton to have infinitely many actions. Since we cannot eval-
uate preconditions for infinitely many actions in finite time, Spectrum separates the traditional
precondition into two parts: a PRE (precondition) clause and a SEL (selection) clause. The
PRE clause determines if there exists an assignment to the arguments of the action that would
result in an enabled action, and the SEL clause is used to select the particular argument values

for an enabled action. This will become clear as we present the details of the language.

Since the Spectrum language is part of a research tool for algorithm design and study,
linguistic support for verification, analysis, and visualization are also provided. The language
provides a means to express state invariants (predicates on the automaton state) to be checked
after each of its steps in an execution. We also present a mechanism called a spectator, a
separate I/O automaton having only input actions, that is useful for mechanically verifying
during simulation that an automaton’s execution is among the set of executions permitted by
its specification, as well as for keeping track of various properties of an execution (such as
the number of times a particular component enters its critical section) for analysis purposes.
In addition, a mechanism is provided for defining pseudovariables, which may be mapped to
colors in a graphical display of the algorithm execution. In keeping with our design goals, all
of this extra language support is provided in such a way as not to obscure the algorithm being
studied. The “extra” pieces of code that are present only for purposes of studying the algorithm
are clearly separated from the algorithm itself. In spite of this separation, the mechanisms
themselves are well-integrated with the rest of the language: the same sorts of expressions used
to describe the algorithm are also used to define invariants, spectators, and pseudovariables.

In order to shorten the write/simulate/modify cycle, the language is interpreted, provides a
convenient set of built-in data types, and is staticaily type-checked. These last two properties
make it easier to express algorithms at a high level and permit users to concentrate on debugging

their algorithms, rather than on finding obscure errors in their programs.

The remainder of the chapter is organized as follows. We begin in Section 3.1 by identifying

3.1. THEORETICAL FOUNDATIONS 35

those aspects of the model that form a solid foundation for an implementable programming
language, as well as those that must be compromised slightly in order to achieve a practical
implementation. Then. in Section 3.2 we discuss a major design decision of the Spectrum Simu-
lation System. namely the separation of I/O automaton types from the I/O automaton system
configuration. Following this, Section 3.3 contains the details of specific language mechanisms
for defining I/O automaton types. Section 3.4 contains an example of an automaton type for
LeLann's leader election algorithm {39]. Finally, Section 3.5 describes special language support
for verification, analysis, and visualization. A grammar for the language syntax and a list of
built-in functions are contained in the appendix. This chapter contains sufficient detail to serve
as an introduction to the Spectrum programming language for potential Spectrum users. The

implementation of the language is described in the next chapter.

3.1 Theoretical Foundations

In the previous chapter, we reviewed the I/O automaton model on which the Spectrum pro-
gramming language is based. Before presenting the language, we identify those features of the
model that provide a solid foundation for a useful and implementable programming language,
and also discuss those features of the model that must be modified slightly in order to produce
an implementable language. We begin with the model features that can be captured directly

in the language:

¢ Automata consist of five components: a set of states, a set of initial states, a set of actions
divided into input actions and output actions, a transition relation, and a partition of the

output actions into classes.!

e Input actions are always enabled, and output actions are under the control of only one

automaton. In this way, we can describe systems of autonomous components.

e Atomicity is made explicit. I/O Automata are described in terms of state transitions,
where each transition is executed atomically. There is no doubt about which are the

atomic steps.

'For simplicity, we treat internal actions as output actions that are not inputs to other components.

36

CHAPTER 3. THE SPECTRUM LANGUAGE
Communication is accomplished by shared actions. Since shared actions take place si-
multaneously at all the participating automata, it is easy to reason about communication

among the automata.

Automata may be composed to construct complex systems. This gives rise to flexible
modularity and straightforward encapsulation mechanisms. System modules can be com-
posed in a variety of ways (for example, in a hierarchy or a series of layers). Reasoning

about modules is accomplished in terms of the actions that occur at their boundaries.

Transition relations are nondeterministic. Nondeterminism is useful for program devel-
opment. One can first write a loosely structured program, prove it correct using the
model, and then “tune” it for performance by placing additional preconditions on locally

controlled actions with the knowledge that safety properties still hold.

The model is simple, having relatively few concepts. Many possible language features,
such as elaborate control constructs and user-defined abstract data types, are orthogonal
to the basic concepts of the model and could be added to the Spectrum language without

disruption.

Although the above is not a complete list of the features of the language, it should be clear

that most of the features of the model are suitable for an implementable programming language.

However, there are several aspects of the model that cannot be implemented:

¢ Obviously, it is impossible to implement a truly infinite-state automaton on a digital

computer with finite storage. Nonetheless, we can support data structures that give the
illusion of an infinite state set and allow the state space of automata to be quite large —

large enough for any practical algorithm.

Since the implementation must run on a deterministic machine, we provide randomiza-
tion in the language and the scheduler in place of nondeterministic choice in the model.
Luckily, the model does not rely on nondeterminism in the automata-theoretic sense.
That is, nondeterminism is not used in the model to “guess” a correct solution to be
deterministically checked. Rather, nondeterminism is merely present to permit a large

number of possible executions of the algorithm. All of these executions are supposed

3.1. THEORETICAL FOUNDATIONS 37

to be correct. as opposed to the usual automata-theoretic case where only one need be
correct. Therefore, substituting randomization for nondeterminism is an acceptable de-
sign decision. Since the intention is to build a tool that encourages experimentation with
algorithms. and since generating many different executions of an algorithm is one way to
achieve this, we provide randomization in the language rather than requiring that algo-
rithm designers transform their general solutions to ones that make fixed deterministic
choices. Alternatives to randomization in the scheduler, such as deterministic schedulers

and user-controlled scheduling, will be discussed later.

e The model assumes that systems may have infinitely many automata and that the au-
tomata all exist at the beginning of an execution. OQur implementation can support only a
finite number of automata, all in existence at the beginning. In addition, each automaton

is allowed only a finite number of equivalence classes in the partition.?

The notion of fairness 1s important in both the model and the implementation, but is only
secondarily a language consideration. One might imagine various algorithms for scheduling
automaton classes, which may or may not satisfy the fairness requirement imposed by the
model. However, the only requirement for the language is that one be able to specify the set
of classes to which one must be fair. Then it is the responsibility of the simulator to guarantee
fairness. (As we will see in the next chapter, the current implementation of Spectrum provides
two schedulers, a round-robin scheduler and a randomized scheduler. The round-robin scheduler
guarantees that all executions are fair, while the randomized scheduler produces fair executions

with high probability.)

Having discussed generally how the properties of the I/O automaton model can be cap-
tured in an implementable language, we now turn to the details of the Spectrum programming

language design.

3 An interesting possibility for further work would be to add language constructs for creating new automata
and classes dynamically to provide the illusion of an infinite set.

38 CHAPTER 3. THE SPECTRUM LANGUAGE
3.2 A Separation of Concerns: Automaton Types vs. Config-

urations

At the beginning of this chapter, we said that the purpose of the Spectrum programming
language is to express I/O automaton types, the building blocks of I/O automaton systems.
An automaton type defines the signature, states, transition relation, and action partition of
potentially many different automata. Having defined a collection of automaton types in the
language, one separately supplies a configuration that defines the set of instances of automaton
types to be simulated. In other words, the language is not used to define the entire system to be
simulated. but only to define the different kinds of automata that may exist in a system. This
division is central to the design of the Spectrum Simulation System. It separates the algorithm
description from the system configuration in which the algorithm is to run, and allows one to

experiment with algorithms by varying the system configuration independently.

One may think of an automaton type as a program and an automaton instance as a single
invocation of that program. Each instance of a given automaton type has the same program,
but that program may reference information present in the configuration. Thus, twoinstances of
the same automaton type may have different initial states, signatures, transition relations. and
partitions. Because of this, we say that an automaton type is parameterized by the configuration.
Therefore, it is important to have an understanding of what is contained in a configuration in

order to understand the programming language fully.

A configuraticn defines the automaton instances and relationships between them. Every
configuration specifies the automaton type of each instance, and includes a unique automaton
id for each instance (assigned automatically by the system). At his or her option, the user may
assign each instance a string name, and may specifv a set of directed edges that organizes the
instances into an arbitrary graph. As part of the configuration process, one may create new
automaton types by composing other automaton types; each instance of such a type is then
a composition of several instances of other types. If an instance’s type is such a “compased
type,” then we say that it is the “parent” of each of its instantiated components; this hierarchical

relationship is also included as part of the configuration data.

To avoid confusion, we emphasize that the programming language itself is not used to create

3.3. LANGUAGE CONSTRUCTS 39

composed automaton types, but only to define the lowest level automaton types in a system.
In Chapter 5, we will say more about creating composed types, and about the configuration
process in general.

One purpose of the configuration is to break symmetry. It may be used in arbitrary ways to
define the signatures and transition relations of automata. For example, in a configuration of
several instances arranged in a ring, one might use directed edges between instances to specify
which of the instances are neighbors. Later in this chapter, we will become more specific about

how configuration data are accessed within automaton type definitions.

3.3 Language Constructs

In this section, we present the Spectrum programming language constructs for defining the
states, initial states, signatures, transition relations, and partitions for I/O automaton types.
The mechanisms are presented one by one, and are followed in Section 3.4 by an illustrating
example. Since defining an I/O automaton system configuration is not strictly part of the

programming language, we defer that discussion to Chapter 5.

3.3.1 Data Types

The Spectrum programming language is strongly typed and statically type-checkable in order to
save users from wasting time searching for obscure errors in their code. The state components
of an automaton, the arguments of actions, the parameters of classes (to be explained later),
and the values of expressions in the language all have associated data types that are checked
for compatibility when an automaton types file is loaded into the simulator. In this section, we
describe Spectrum’s built-in data types, mechanisms for constructing complex data types, and
functions for manipulating values of various data types. In later sections, we will see how these
data types are used in automaton type definitions.

The language supports four base types: integers, booleans, automaton id’s, and strings.
In addition, the language provides five type constructors for building more complic~ted struc-
tures fromw the base types: tuples with named fields, sets, multisets, sequences, and mappings.

Constructed types may be arbitrarily nested. For example, one can define sets of tuples. For

40 CHAPTER 3. THE SPECTRUM LANGUAGE
programming convenience, any data type may be assigned a mnemonic name using a DATA
declaration. In the following example, the first line defines the type buffer to be a multiset of
tuples, where each tuple has a string and an automaton.id. The second line defines the type

messages to be a mapping from automaton id’s to buffers.

DATA buffer multiset(tuple(msg:string, to:automaton_id))
DATA messages mapping(automaton_id, buffer)

Our notion of type equality is structural equality, where names of tuple fields are considered
to be part of the structure of a type. For example, the type same_type below is equivalent
to buffer above, but different_type is not. User-defined names for constructed data types are
simply conveniences in writing programs; they are irrelevant in type-checking. One may think

of a DATA declaration as a macro definition. Recursive declarations are not permitted.

DATA pair tuple(msg:string, to:automaton_id)
DATA same_type multiset(pair)
DATA different_type multiset(tuple(name:string, id:automaton_id))

Every data type, including all constructed types, has operations for comparison (=, <, <,>,>)
and assignment. In addition, each data type has its own special set of operations. The data
type of the return value for each operation is inferred (statically) from the data types of its
arguments. For example, if myset is declared to be a set of integers, then set minimum(myset)
returns a value of type integer. Similarly, the expected data types of different arguments
of a given function are checked (statically) for -compatibility. For example, if mytuple is a
tuple variable, then the expression set.insert(myset,mytuple) would generate an error at
load-time, since one cannot insert a tuple into a set of integers. Operations (in addition to
assignment and comparison) for the various data types are summarized below and listed in

detail in Appendix B.

o integers: Operations include arithmetic inverse, addition, subtraction, multiplication,
truncated division, and mod. Additionally, integer variables may be used in “summary

mappings” for algorithm visualization purposes. We will say more about this in Chapter 5.

¢ booleans: Operations include testing for truth, negation, and logical and, or, xor, and im-

plication. Like integer variables, boolean variables may be used for summary mappings.

3.3. LANGUAGE CONSTRUCTS 41

All predicates in the language are boolean expressions. These include action precondi-
tions, tests in conditionals, and state invariants. We will discuss all of these in detail later

in this chapter.

e automaton id’s: Operations for this data type provide the ability to access configuration
data. For example, if x is an automaton id, then neighbors(x) returns the set of au-
tomaton id’s for the neighbors (in the configuration graph) of the automaton instance
with id x. The function self() returns the id of the automaton calling the function. An
automaton id may also be used to reference the following information about the associ-
ated automaton instance in a configuration: its name (a user-supplied string), its parent
in the composition hierarchy, its neighbors adjacent to incoming edges in the graph, and
its neighbors adjacent to outgoing edges in the graph. An operation is also provided for
obtaining the set of automaton id’s for all instances of a given automaton type in the con-
figuration. Later, we will see how configuration data may be used to define the signature

and transition relation of an automaton instance.

o strings: One may manipulate strings using generic assignment and comparison operators.
Also, a decimal number represented as a character string may be converted to an integer.
This is particularly useful when one wishes to assign numerical names to automaton

instances in the configuration, and then perform arithmetic operations on those names.

¢ tuples: Using record notation (to an arbitrary depth), one can reference the fields of
tuples by name, and then operate on them individually according to their particular data
types. Tuples are convenient for storing multipart messages. For example, a message’s

destination, text string, and sequence number can be manipulated as a unit using a tuple.

¢ sets and multisets: Operations include initialization (to empty), creation of a singleton set,
boolean test for empty set, finding the size of a set, testing for set membership, and set (or
multiset) union, intersection, and difference. Furthermore, one may select the minimum
or maximum element from a set, select an element at random, or select an element (or
maximal subset) such that a given boolean expression is satisfied. Quantification over

a set (forall, exists), and iteration over a set (forall x in set s do ...) is also supported.

42 CHAPTER 3. THE SPECTRUM LANGUAGE
In distributed algorithms, sets and multisets are commonly used as buffers (e.g., to keep

track of pending messages).

e sequences: Operations include initialization (to the empty sequence), inserting at the
front or back, deleting from the front or back, deleting the first occurrence of a specific
element, test for membership, and finding a random element without modifying the se-
quence. Sequences are particularly useful for implementing stacks and queues, as well as

maintaining history information.

e mappings: Operations include initialization (in which a default value is specified for “un-
mapped” elements of the domain), assignment of the value of a mapping for a particular
element of the domain, and evaluation of the mapping at a particular element of the
domain. Mappings are useful for representing dynamically changing functions (e.g., to
keep track of status information for each adjacent edge). In addition, we will see that

mappings are useful data types for algorithm visualization.

In order to prevent references to undefined variables, each base type in the language has a
default value. Similarly, each type constructor has a default value, defined recursively on the
basis of the defaults for its component types. As we will see in Section 3.3.3, 2 mechanism is
provided for explicitly defining the initial values of variables, but these defaults are used when
no explicit initial value is provided.

Readers should refer to Appendix B for a complete summary of the supported operations.
Currently, there is no provision in the language for writing user-defined operations. However,
the language implementation is such that new operations may be added easily. Note that (with
the exception of record notation) all of our syntax uses an applicative style; there are no infix
operators. This adds to the length of our programs and can impair readability somewhat, but
is not an inherent problem with the language. One might imagine “sugared” versions of the

syntax that could be preprocessed into our applicative style.

3.3.2 Action Types

We use action types to define the different kinds of actions that may be used in the signatures

of automaton types. Since a given action may be shared by many different automaton types,

3.3. LANGUAGE CONSTRUCTS 43

action types are declared outside of the scope of any automaton type definition. Each action
is declared with a name and an argument type. The name is used to identify the action in the
signatures of automata and in executions. The argument type defines the data type for the

argument of the action. For example,

ACTION send tuple(msg:string, to:automaton-id)

declares an action with the name “send” and an argument that is a tuple consisting of a text
string (named msg) and an automaton-id (named to). In descriptions of the transition relations
of automaton types, the argument of an action is referenced by the name a, and record notation
is used to refer to the argument components. For example, in the context of an event for the
action above. one would refer to the first component of the argument by a.msg. This is described
further in Section 3.3.3.

In addition to the user-defined argument for each action type, there is an implicit argument
a.owner of type automaton-id, which names the automaton for which the action is an output.
This argument may be referenced in the same way as the user-defined arguments. Having this
argument ensures that every action in the system is under the control of a single automaton.
(In the current implementation, a.owner is not accessible in automaton type definitions, but
can be duplicated, of course, as part of the user-defined argument of an action.)

Simply declaring an action type does not associate it with any particular automata. It is
the signature of an automaton that determines which are its input and output actions. When
events take place during a system execution, the set of participating automata is determined
according to the automaton signatures; each participant automaton takes a step according to
its transition relation. its current state, the action name, and the action argument values. In
the next section, we describe how the states, signatures, and transition relations of automaton

types are defined.

3.3.3 Automaton Types

As mentioned earlier, there are two ways to define an automaton type. The first is to write
an explicit textual definition in the Spectrum programming language. The second is to use

the graphical interface to compose several automaton types into a new “composed” automaton

44 CHAPTER 3. THE SPECTRUM LANGUAGE

tvpe. In this section, we consider only the first method; the latter is discussed when we describe
the user interface in Chapter 5.

Every automaton type declaration begins with a type name. For example, the line

AUTOMATON channel

says that we are about to define an automaton type with the type name channel. Each sub-
sequent line (up to the next automaton declaration) is used to define the various pieces of the
channel automaton type. Recall that an I/O automaton consists of a set of states, a set of
initial states, a signature, a transition relation, and a partition of the locally controlled actions.
We now present the programming language constructs that Spectrum provides for defining each

of these pieces of an automaton type.

States

The first part of an automaton type definition, following the automaton type name, is the state
declaration. The set of states for an automaton type is defined with a data type. For example,

the line

STATE tuple(status:integer, buff:set(tuple(msg:string, to:automatoun-id)))

says that each instance of this automaton type has two state components: an integer status,
and a set buff of (string, automaton-id) pairs. The set of states for an automaton with this
state definition would consist of the set of all possible assignments to these components. Thus,
an automaton with this state definition would have infinitely many states. (As we mentioned
earlier, there are physical limitations of the computer, such as the largest representable integer
or the amount of memory available for storing text strings, that prevent us from implementing
a truly infinite state automaton. However, the language gives us the power to express infinite
state automata that may be implemented up to the limitations of the physical architecture.)
State components are private storage. In the definition of a transition relation, one refers to
the state as 8, and uses record notation to refer to particular state components. For example,
given the above state declaration, s.status would refer to the value of the first state component.

An automaton’s state may be referenced almost anywhere in the definition of the transition

3.3. LANGUAGE CONSTRUCTS 45
relation, but may be modified only in effect clauses. We will describe this in more detail when
we discuss trarcition relations.

The initial values for state components are defined in a special input action called initially,
which occurs as the first action of every execution. We will see an example of this in Section 3.4.
As we described in Section 3.3.1, any state component not explicitly assigned an initial value

is given a default value, but it is considered good style to initialize all state components.

Signatures

The action signature of an automaton type consists of a set of input actions and a set of output
actions.® Recall that action types are defined outside of the scope of any automaton type. In
order to add a particular action type to the signature of an automaton type, one simply lists
the action type name, indicating whether it is to be classified as an input action or an output

action. For example, recall the action type send defined earlier. The line

INPUT send

says that all actions of type send are input actions to automata of this type. However, for
any particular action type, we may not wish that an automaton have in its signature all the
actions for all possible values of the argument. Therefore, the language provides a mechanism
for restricting the argument values for each action type in the signature. Such restrictions are
accomplished using a WHERE clause. For example, instead of the previous line, we might

write:

INPUT send WHERE set_el(neighbors(self()), a.to)

This line specifies that the automaton being defined does not have all actions of type send as
input actions, but only those where the “to” component of the argument is an element of he
set of neighbors of the automaton in the configuration. (Recall that a.to refers to the “to”

component of the action argument.)

*In the I/O automaton model, the signature of an automaton consists of a set of actions, divided into input
actions, output actions, and internal actions. For simplicity, we have restricted the Spectrum language to input
and output actions only. An internal action can simply be regarded as an output action appearing in the signature
of only one automaton.

46 CHAPTER 3. THE SPECTRUM LANGUAGE

The above example illustrates one way that configuration data can be used to parameterize
the signature of an automaton type; each automaton instance of this type would have a slightly
different signature, according to its set of neighboring automaton instances in the configura-
tion. A WHERE clause can be any boolean expression involving the arguments of the action,
constants, and configuration data. Since the signature of an automaton is static, a WHERE
clause cannot refer to values of state components. The set of output actions may be restricted

using WHERE clauses as well.

Transition Relations

Spectrum provides language constructs for defining transition relations that are similar to the
“precondition-effect” notion of Lynch and Tuttle. However, there are important differences.
In the precondition-effect notation, a precondition is defined for each possible action name,
where an action name is taken to include the values of the action arguments. That is, Lynch
and Tuttle allow the precondition to depend on the values of the arguments. This is rather
impractical for a real programming language, since this might require considering each possible
value of the action argument in order to determine which actions of an automaton are enabled.
Considering that the data types of action arguments may have infinite domains, it would be a
costly (if not impossible) pracedure to evaluate the precondition for each possible action and
determine the set of enabled actions.

We avoid this computational disaster by splitting the traditional precondition for an action
into two parts: the precondition and the selection. In the precondition, we consider the action
type as a single unit, ignoring the values of the arguments. The purpose of the precondition
is to answer the following question: “Is there some assignment to the arguments of the action
type that would give rise to an enabled action in the current state?” That is, if we think
of each action type as a set of actions, the precondition in our language determines whether
or not this set of actions contains at least one action that is enabled in the current state.
Given that the precondition is satisfied, the selection clause is used to determine (possibly at
random) the particular values that are assigned to the arguments of the action. Separating
the argument selection from the precondition in this way avoids the impracticality of having

unbound variables in the precondition. It also means that one need not select action arguments

3.3. LANGUAGE CONSTRUCTS 47
whenever the precondition is tested, but only when that particular action type is chosen for the
next step of the execution.

So, the transition relation for an automaton type is defined by associating precondition,
selection, and effect clauses with the action types listed in the signature of the automaton.
Output actions may have all three kinds of clauses, while input actions have only effect clauses.
To make programming easier and enhance readability, the clauses for each action type imme-
diately follow the corresponding entry in the signature. We now say a few words about each of
these three kinds of clauses. Examples of each are contained in Section 3.4.

A precondition is a predicate (or conjunction of predicates) on the current state of the
automaton. Configuration data may be referenced in a precondition, but action arguments
may not be referenced. If the precondition of an action type evaluates to true in a given state,
then an output action of that action type is said to be enabled in that state.

A selection is an assignment to the argument of the action. When the argument has several
components, they may be assigned separately within the selection clause. The assignments are
executed sequentially and may reference (but not modify) state and/or configuration data. In
addition, once an argument component has been assigned a value, it may be referenced in later
assignments within the selection clause. In the current implementation, one must assign to all
argument components, even though the WHERE clause on the output action may restrict some
argument components to a single possible value; after selection, the system simply checks that
the WHERE clause is satisfied by the argument selected.

An effect clause is used to derive the new state of the automaton from the old state, according
to the action argument. It consists of a sequence of assignments or modifications to all or part
of the state of the automaton. Again, the statements are executed sequentially and effects of
earlier modifications are observed by later ones. Of course, one may reference (but not modify)

the action argument in the effect clause.

Partitions

So far, we have described how to define states, initial states, signatures, and transition relations
of I/O automaton types. We now consider the last of the five basic components of an 1/0 au-

tomaton, the partition of the locally controlled actions. Since we have restricted our signatures

48 CHAPTER 3. THE SPECTRUM LANGUAGE
to include only input and output actions, the locally controlled actions are simply the output
actions. We divide the output actions of an automaton type into classes by placing each output

action type in the signature within a CLASS block. For example, the lines

CLASS
QUTPUT send

CLASS
OUTPUT ack

OUTPUT grant

say that for each instance of this automaton type, all send actions are in one class of the
partition and all ack and grant actions are in another class. The class block construct is
simple, and makes the division of actions into classes obvious at a glance. However, as we have
described it so far, the construct is not quite general enough, since all output actions of a given
type must belong to the same class. Sometimes one wishes to place different actions of the
same type into different classes, according to their argument values. Therefore, we allow a class
block to be parameterized using configuration data. Each parameter may take on values from
a fixed set, and the type of the parameter is inferred to be the type of the elements of that set.
Just as we use 8 to refer to state components and a to refer to action arguments, we use ¢ to

refer to class parameters. For example,

CLASS (dest:neighbors(self()))
OUTPUT send WHERE eq(a.to, c.dest)

declares several classes, one for each neighbor of the automaton instance in the configuration
graph. Since neighbors(self()) is a set of automaton id’s, dest has type automaton.id. Each
class contains a set of send actions with that neighbor as the “to” component of the argument.
A class may contain more than one type of action, and may be parameterized by more than
one set. Although the number of classes must be finite, the number of actions within a class

may be infinite,

34. EXAMPLE 49

In defining a class, one may optionally specify a non-negative integer as the “weight” of
that class. In the current implementation, these weights are interpreted by the randomized
scheduler as the average relative speeds of the processes. For example, if two classes continually
contain enabled actions, and the weight of the first class is twice that of the second, then the
first class will take twice as many steps as the second, on average. If a weight is not explicitly

assigned, a default weight of 1 is used.*

3.4 Example

As an example of the use of the language, we present an implementation of LeLann’s algo-
rithm for electing a leader in an asynchronous ring, where each process in the ring starts with a
unique identifier [39]. Essentially, each process passes a message containing its identifier to its
left neighbor in the ring. Processes forward only those messages containing identifiers greater
than their own. The process whose identifier travels all the way around the ring announces that
it is the leader. To model the asynchrony of message delivery, we place a channel automaton
between each pair of neighbors in the ring. The automaton types channel and process ar- shown
in Figure 3-1. The user-supplied names in the configuration are used as the process identifiers.
(In a configuration, the default user-name of a process is its system-supplied automaton-id
converted to a string.)

Each automaton has an input action called initially. The action is not an output of any
automaton, but the system causes an initially event to occur once at the beginning of each
execution to initialize the state of each automaton. Uninitialized state components are assigned
default values, as described earlier.

In this example, each type of output action is in its own class. However, we could just as
easily place the send and leader actions in one class. Alternatively, one might parameterize
the class containing the send action as shown in Figure 3-2. In that figure, x is declared to
be of type automaton.id, since the all.of type function returns a set of automaton id’s. For
each element of all_of_type(”process”), a separate class is created with x bound to that element.

Thus, each possible send action would be in its own class of the partition.

‘It has been suggested that this default be changed to 100 in future versions of the system.

50 CHAPTER 3. THE SPECTRUM LANGUAGE

DATA message tuple(msg:string, chan:automaton_id)
DATA buffer multiset(mcssage)

ACTION initially Q)

ACTION send message
ACTION receive message
ACTION leader string

AUTOMATON channel
STATE butfer
INPUT initially
EFF mset_init(s)
INPUT send WHERE eq(a.chan,self())
EFF mset_insert(s,a)
CLASS
OUTPUT receive
PRE bool_not(mset_empty(s))
SEL assign(a,mset_random(s))
EFF mset_delete(s,a)

AUTOMATON process
STATE tuple(pending:set(string), status:string)
INPUT initially
EFF assign(s.pending,sct_single(name(self())))
assign(s.status,"waiting")
INPUT receive WHERE set_el(in(self()),a.chan)
EFF ifthenelse(greater(a.msg,name(self())),
set_insert(s.pending,a.msg),
ifthen(eq(a.msg,name(self())),
assign(s.status,"elected")))
CLASS
OUTPUT send
PRE bool_not(set_empty(s.pending))
SEL assign(a.msg,set_random(s.pending))
assign(a.chan,set_random(out(self())))
EFF set_delete(s.pending,a.msg)
CLASS
OUTPUT leader
PRE eq(s.status,"elected")
SEL assign(a,name(self()))
EFF assign(s.status,"announced")

Figure 3-1: Automaton types for LeLann’s leader election algorithm.

3.5. SUPPORT FOR VERIFICATION, ANALYSIS, AND VISUALIZATION 51

CL?SS (x: all_of_type("process"))
OUTPUT send
PRE set_el(s.pending,name(x))
SEL assign(a.msg,name(x))
assign(a.chan,set_random(out(self())))
EFF set_delete(s.pending,a.msg)

Figure 3-2: A parameterized class.
3.5 Support for Verification, Analysis, and Visualization

In the previous sections, we presented Spectrum language constructs that allow one to express
algorithms as 1/O automaton types. But since the language is part of an algorithm development
tool, we would like more than just the ability to express algorithms. We would like the language
to provide support for studying algorithm executions. In this section, we present language

constructs that are useful for algorithm verification, analysis, and visualization.

3.5.1 State Invariants

Constructing an assertional proof is a common method for showing that an algorithm meets
its specification. In an assertional proof, one states a number of properties on the state of the
system that imply the correctness of the algorithm. Then, one shows, usually by induction
on the length of the exec ition, that these properties are invariant. That is, they hold in all
reachable states of the algorithm. Often, the most difficult part of these proofs is in coming
up with the right set of invariants. Trying to construct a proof using the wrong invariants
can result in much wasted effort. It is helpful to be able to check invariants automatically on
algorithm executions in order to have an opportunity to refine them before proceeding with a
rigorous proof. Therefore, the Spectrum programming language provides the ability to specify
a set of invariants on the state of an automaton that are to be checked after each step of the

execution. For example, the clause

INVARIANT
less(s.status,5)
bool_or(greater(s.status,0), set_empty(s.buff))

specifies that the status component of the state must always be less than five, and that either

52 CHAPTER 3. THE SPECTRUM LANGUAGE
status is greater than zero or buff is empty. As we will see in Chapte~ 4, after each step of the
automaton’s execution. the sct of invariants is checked, and the execution is interrupted if aa
invariant is violated.

In assertional proofs of distributed algorithms, it is quite common to write invariants that
involve the states of many different system components (i.e., global invariants). Unfortunately,
the INVARIANT construct in Spectrum allows one to express invariants only on the local state
of an automaton. We discuss this problem further in Chapter 6 and propose a solution in

Chapter 8.

3.5.2 Spectators

Assertional proofs use invariants on the state of a computation as a means to show properties
of the behavior of an algorithm. That is, our primary concern is not with the states themselves
but with determining that the sequence of actions that occurs at the boundary between the
algorithm and the environment is consistent with the problem specification. As we saw in
Chapter 2, the I/O automaton model provides schedule modules as a way to specify problems
in terms of a set of allowable behaviors. In this section. we describe a device called a spectator
that allows one to check executions of algorithms against the set of allowable behaviors specified
by a schedule module.

For purposes of illustration, we define a schedule module for the mutual exclusion problem.
Fix n, a positive integer, and let 7 = {1,2,...,n}. We define schedule module M with sig(M)
as follows:

Inputs: UserTry,,: € Z Outputs: Crit;,i €7
UserExit;,1 € 7 Rem;,i€

Schedule module M interacts with an environment that may be thought of as a collection
of n user processes u,, ¢+ € I, where each process u; has outputs UserTry; and UserExit;, and
has inputs Crit; and Rem,. A UserTry; action means that process u; wishes to enter its critical
section. A Crit, action by M gives u; permission to enter its critical section. A UserExit; action
means that process u, is leaving its critical section. Finally, the Rem, action gives u; permission

to continue with the remainder of its program. If 3 is a sequence of actions of M, then we

3.5. SUPPORT FOR VERIFICATION, ANALYSIS. AND VISUALIZATION 33
define 3|i to be the subsequence of 3 containing exactly the UserTry,, Crit;, UserExit;, and
Rem; actions. Before defining the allowable schedules of M, we define the set of well-formed
sequences of actions of M. Let 3 be a sequence of actions in sig(M). We say that 3 is well-
formed iff for all i € Z. all prefixes of 3|i are prefixes of the infinite sequence UserTry,, Crit,,
UserExit;, Rem;, UserTry;. Crit,,.... This says, for example, that a process will not issue a try
request while in its critical section.

We define the set scheds(M), the allowable external behaviors of M, as follows. Let 3 be a
sequence of actions in sig(M). Then 3 € scheds(M) iff the following conditions hold:

1. M preserves well-formedness in 5.

2. If 3 is well-formed. then Vi,j € I, if Crit; and Crit; occur in 8 (in that order). then

UserExit, occurs between them.

Condition (2) says that no two processes are in their critical sections simultaneously, pro-
vided that the user processes preserve well-formedness. One may notice that this schedule
module specifies only safety properties; it does not require that any progress be made. In
Chapter 7, we will see a similar schedule module that specifies both safety and liveness proper-
ties.

We would like to write a spectator to check executions of an automaton system against the
allowable behaviors specified by schedule module M. A spectator is simply an I/O automaton
with no output actions that observes the actions taken by other automata. By writing spectators
without output actions, we need not be concerned that a spectator could interfere with the
execution of an algorithm. Furthermore, it is not sensible to have spectators report a detected
error by means of an output action, because the scheduler might not give the spectator a chance
to take a step until much later in the execution. Instead, we write a spectator so that one of
its own invariants is violated whenever it detects an error. Conveniently, this interrupts the
simulation immediately, so that the user may explore the source of the error. One can usually
construct a spectator directly from the schedule module specifying the problem.

The spectator in Figure 3-3 corresponds to Condition 2 of schedule module M, and could
be used to check the executions of a mutual exclusion algorithm. In this spectator, the state

component last-crit keeps track of the index of the process most recently in the critical

34 CHAPTER 3. THE SPECTRUM LANGUAGE

AUTOMATON CheckMutex
STATE tuple(last-crit: integer, in-crit: boolean, ok: boolean)
INVARIANT eq(s.ok,true)
INPUT initially
EFF assign(s.last-crit, 0)
assign(s.in-crit, false)
assign(s.ok, true)
INPUT Crit
EFF assign(s.ok, bool_not(s.in-crit))
assign(s.last-crit, a)
assign(s.in-crit, true)
INPUT UserExit
EFF assign(s.ok, bool_and(s.in-crit, eq(s.last-crit,a)))
assign(s.in-crit, false)

Figure 3-3: A spectator for mutual exclusion.

section, and the component in-crit keeps track of whether the last input action was Crit or
UserExit. When a Crit action occurs, the invariant ok = true is violated if and only if no
UserExit occurred since the last preceding Crit action. When a UserExit action occurs, the
invariant is violated if and only if the argument of the action is not the index of the process
currently in the critical section. It is easy to see how these cases are derived from Condition 2
of schedule module M. One could write a similar spectator automaton type for checking that
each user’s execution is well-formed.

Note that a spectator depends only on the problem specification, and never on the algorithm
itself. That is, a spectator for a given problem specification could be used to check any solution
to that problem. In addition to verifying that executions are correct, spectators can be helpful
in the analysis of algorithm efficiency. For example, one might use a spectator to count the
number of messages sent in an execution, or to keep track of the rates at which processes enter
their critical sections in a mutual exclusion algorithm. Again, because a spectator has no output

actions, we know that such analysis cannot interfere with the algorithm execution.

3.5.3 Pseudovariables

Another language construct provided in Spectrum is the MAINTAIN clause, which updates

state components after every action of an automaton. The MAINTAIN clause is somewhat

3.6. SUMMARY 55
similar to Lamport’s state functions [37] and the ALWAYS construct of UNITY [14], which we

)

discuss in Section 6.1.2. It is used to maintain “pseudovariables,” variables that are a function

of the remaining state components. For example,

MAINTAIN
assign(s.status, set_size(s.buff))

would cause the state component status to be updated to the buffer size after every step of
the automaton. The above is a relatively simple example. but a pseudovariable can be used to
summarize the state of an automaton in arbitrarily complicated ways. When pseudovariables
take on integer or boolean values, they can then be used as the basis of algorithm visualization.
As we will see in Chapter 5, each automaton instance is represented in the graphical user
interface as an icon. Within the interface, one can create “summary mappings” that associate
state components of an automaton type with the colors of the icons. In this way, important
automaton state information can be displayed during simulation. Using the above example,
one could create a summary mapping for the state component status and watch the sizes of
the buffers of each automaton grow and shrink as the execution proceeds; such a visualization
might be useful for identifying congestion in parts of the network being simulated.
MAINTAIN clauses are also useful for algorithm analysis. For example, one might place a
statement in the MAINTAIN clause to increment a counter whenever the automaton takes a
step. By keeping track of such information in the MAINTAIN clause, rather than dispersing it
throughout the transition relation, one can separate those parts of the code that concern the
algorithm itself from those that are present only for the purposes of visualization or analysis.
The MAINTAIN clause is executed after the effects clause of each action and before any local

invariants are checked. The expressions of the MAINTAIN clause are executed sequentially.

3.6 Summary

In this chapter, we saw that a separation of I/O automaton types and the configuration of
an I/O automaton system is a central part of the Spectrum design. We presented constructs
for defining the states, signatures, transition relations, and partitions of automaton types and

described linguistic support for verification, analysis, and visualization. As a partial summary

56 CHAPTER 3. THE SPECTRUM LANGUAGE

clause state action arguments | class parameters | configuration data
STATE declared — — —
INVARIANT read — — read
MAINTAIN | read/modified — — read
ACTION — declared —_ —

CLASS — — declared read
WHERE — read read read

PRE read — read read

SEL read read/modified read read

EFF read/modified read read read

Figure 3-4: Data that may be declared, read, or modified by the various clause types.

of the constructs provided in the Spectrum programming language, Figure 3-4 lists, for each

kind of clause, those categories of values that may be declared, read, or modified by that clause.

In Chapter 6, we present an evaluation of the Spectrum Simulation System in terms of the
design goals we set out in Chapter 1. Although the programming language will be discussed in
this evaluation, at this point we say a few words about the programming language in isolation.
We should emphasize that the semantics of the language are entirely faithful to the I/O au-
tomaton model, with the exception that nondeterminism is replaced by randomization. Since a
large class of distributed algorithms is expressible in the I/O automaton model, the language is
natural for expressing a large class of distributed algorithms. In addition, I/O automaton com-
position provides us with the modularity necessary to enable users to write spectator automata
to check and analyze algorithm executions in such a way that they do not interfere with the

executions themselves.

The Spectrum language provides constructs for writing well organized descriptions of al-
gorithms as I/O automaton types. The names of automaton types, their state definitions,
signatures, transition relations, and classes are all laid out in a natural way in automaton type
definitions. Extra information, such as invariants for program verification and pseudovariables
for program visualization, are separated from the other constructs, so as not to obscure the algo-
rithm itself, yet are written using the same language mechanisms. The language provides a rich
set of built-in data types with associated operations that conveniently match those mathemat-

ical objects typically used to express distributed algorithms. However, language mechanisms

3.6. SUMMARY 57
for creating user-defined data types would be useful.

The applicative style of the Spectrum syntax (i.e., the lack of infix operators) makes it diffi-
cult to “think in Spectrum.” Spectrum users have found it beneficial to first express algorithms
using a higher-level notation similar to that used by Lynch and Tuttle. Once the algorithms
are expressed in this way, writing the automaton type definitions in the Spectrum language is
straightforward. For example, Gupta [25] presents a number of distributed algorithms written
both in the higher-level notation and in the Spectrum programming language. In order to avoid
this extra step in the programming process, it would be useful to have a “sugared” version of
the syntax that permits infix operators, and an accompanying preprocessor to translate the
sugared version into the syntax we have presented here. Such a preprocessor might also have
an option to generate a “publication version” of the language in a form that could be used by
a text processor.

In Spectrum, control flow is determined completely by preconditions on actions and the
random choices of the scheduler. However, because people tend to think sequentially, the
individual processes in distributed algorithms sometimes take a sequential form. Therefore, it
may be useful to add syntactic sugar for simple control flow constructs that could be translated
into the language presented here. Additional state components would be added to the automata
by the preprocessor to keep track * the “program counter,” and preconditions would reference

this additional information.

58

CHAPTER 3. THE SPECTRUM LANGUAGE

Chapter 4

The Spectrum Simulator

In the previous chapter, we presented the Spectrum programming language used to define I/O
automaton types, the building blocks of I/O automaton systems. In this chapter, we present the
Spectrum simulator, the second main component of the Spectrum Simulation System. Given
a collection of automaton types and a configuration, the simulator performs all of the func-
tions necessary to load and type-check the automaton types, initialize the simulation, interpret
automaton state information, evaluate expressions in the transition relation, and monitor the
set of enabled classes in order to produce executions of an I/O automaton system. The simu-
lator provides a choice of scheduling options, as well as services for checking state invariants,
updating state information on the display, rolling back executions, and generating trace files.

The purpose of this chapter is to impart an understanding of the organization of the simu-
lator, and of how the simulator interacts with the other components of the Spectrum system.
Such an understanding is helpful not only for programmers interested in extending the ca-
pabilities of Spectrum, but also for Spectrum users interested in learning how the simulator
generates executions of their automaton systems. It is also instructive to see how the simple
semantics of the Spectrum programming language (and the I/O automaton model) facilitate a
clean simulator implementation.

The input to the simulator consists of a collection of automaton types and a configuration.
The automaton types are presented to the simulator in the form of a text file containing code
written in the Spectrum programming language. The configuration is made available to the

simulator as a data structure that is shared with the user interface. In addition to these

39

60 CHAPTER 4. THE SPECTRUM SIMULATOR
two pieces of input, th ulator may receive input from the user during the course of the
simulation session. In tk. chapter, we concentrate on the functionality and implementation of
the simulator. Since all user interaction with the simulator is mediated by the user interface,
we leave that discussion for the next chapter.

We organize our presentation of the simulator around its four main logical components, the
loader, the interpreter, the ezecution loop, and the scheduler. The loader parses and type-checks
the automaton types file, and organizes the automaton type definitions into data structures that
are used by the interpreter. The job of the interpreter is to evaluate expressions represented as
automaton types data structures. These expressions may be used to evaluate preconditions to
determine the set of classes with enabled actions, determine the argument values for actions,
determine the set of participants in a given action, effect the state transitions of automata, and
check state invariants. The interpreter contains implementations for all of the built-in operations
for the data types in the language. The interpreter is called on to evaluate expressions at the
discretion of the ezecution loop. The execution loop controls the entire sequence of events that
take place in an execution, from initialization to termination detection. In short, the execution
loop manages the simulation of each event in an execution. The fourth component of the
simulator is the scheduler. The scheduler maintains a list of the classes containing enabled
actions, and is called on by the execution loop at each step in the execution to choose the next
class to be given a turn, according to the selected scheduling algorithm. We now present each

of the logical components of the simulator in detail.

4.1 The Loader

As we have said, the job of the loader is to parse an automaton types file and construct the
data structures that represent the types in that file. It parses data type declarations, action
type definitions, and automaton type definitions, and checks for syntax errors and type errors
in all three. All of this is accomplished in a single pass through the automaton types file.
Upon parsing a data type definition, the loader builds a data structure to represent that
type. In the case of DATA declarations, the loader keeps a data types table that associates data
type names with pointers to their corresponding data type structures. Data types structures

are used by the loader not only to represent declared data types, but also to represent automaton

4.1. THE LOADER 61

state definitions, data 's for the return val. »f functions, the data types of class parameters,
and the data types o1 . .antified variables. These data structures are used in the loader for type
checking, and are used extensively by the interpreter in order to determine the proper treatment

of arguments to generic functions.

Just as the loader creates a data types table to associate data type names with data type
structures, it also creates an action types table that associates each action type name with a
pointer to a data structure representing its argument type. For each action type, the action
types table also holds a pointer to a list of all the automaton types having that action type
among its set of input actions. This list is used during simulation to help determine the set of

automata that participate in an event of that type.

The main job of the loader is to parse each automaton tvpe definition and build a data
structure to represent it. Again, the loader creates a table, called the automaton types table,
with an entry for each automaton type containing: the name of the automaton type, the type of
its state, a list of its input actions, a list of its classes, and two lists of expressions corresponding
to the MAINTAIN and IINVAPIANT clauses of an automaton types definition. As one would
expect, an automaton type's state definition is is represented as any other data type structure.
Similar data structures are used to represent the signature, classes, and transition relation of

an automaton type.

The loader checks for syntax errors and performs type checking on all expressions. When
a function expression is parsed, the loader creates a data type structure representing the type
of the return value of the function, determined for polymorphic functions from the types of the
arguments. This structure is carried with the expression for further type checking (e.g., when
the expression is an argument to another function) and for use by the interpreter. In addition
to the above checks, the loader enforces restrictions on the various clause types, as shown in
Figure 3-4. For example, attempting to assign to a state component in a precondition causes an
error.! In general, the loader generates helpful error messages when it encounters syntax errors

(such as undefined variables, functions or tuple components, and extra or missing arguments).

VThere is one exception to the rules listed in Figure 3-4: in order to permit certain visualization functions,
the loader does allow the configuration data to be modified in certain special cases. For further information, see
the description of the configuration data functions in the appendix.

62 CHAPTER 4. THE SPECTRUM SIMULATOR
4.2 The Interpr er

The interpreter provides four basic services: determine whether or not any action is enabled
from a given class in a given state, select an action from an enabled class? in a given state,
determine which automata have a given action as an input, and produce a new state of an
automaton, given its old state and an action in its signature. This is one place where the
simplicity of the Spectrum language (and the I/O automaton model) contribute to a clean
simulator implementation: all of the above functionality essentially boils down to evaluating
expressions. In order to evaluate expressions, the interpreter creates and manipulates data
structures representing values of expressions, state components, and action arguments. These
data structures are similar to those used to represent data types in the loader, but contain the
actual values instead of data type information. In the course of evaluating expressions, no
type errors can occur, since the loader performs static type checking. However, some errors are
still possible, such as division by zero or drawing a random element from an empty set. When
such a situation arises, the simulator generates an error message that indicates the nature of
the error, the name of the action being processed, and the id of the offending automaton.

As we mentioned above, all the functionality of the interpreter is provided by expression
evaluation. In order to determine whether an action of a given type is enabled in the current
state of an automaton, one calls on the interpreter to evaluate the precondition for that action.
Similarly, to assign to the arguments of an action, one asks the interpreter to evaluate the
selection clause for that action. In order to determine the set of participant automata for an
action, one asks the interpreter to check the WHERE clause of that action for each automaton
instance having that action type in its input signature. Finally, to make state transitions,
one asks the interpreter to evaluate the EFF clause of each participant. All such calls to the

interpreter are under the control of the execution loop, presented next.

4.3 The Execution Loop

The execution loop is responsible for controlling the entire simulation. Upon invocation, the

execution loop assumes that the automaton types data structures and configuration data struc-

*Recall that a class is enabled in a given state if some action in the class is enabled from that state.

4.3. THE EXECUTION LOOP 63

tures are already in ; ce. Its first task in starting up a simulation is to initialize the data

structures for each of the automaton instances.?

Recall that each automaton instance in a configuration has an associated automaton type.
Using the definition of this automaton type, the simulator creates a data structure for each
automaton instance in the configuration. This data structure contains: a list of the classes
of that instance, the current state of that instance, and a list of checkpointed states (used
for rolling back the simulation). It should be emphasized that each instance has its own list
of classes, initialized according to the corresponding automaton type definition. Each class
contains the values of its parameters and a bit indicating whether or not it contains an action
that is currently enabled. For each class in the type definition, if the class is defined without
parameters, then a single corresponding class is created for the instance. However. if the class
of the automaton type is parameterized, then the interpreter is called on to determine the
set of passible values for each parameter according to the set expression associated with that
parameter and the configuration data for that automaton instance; then a separate class is
created for the instance for each possible combination of parameter values. When created, the

enabled bit of each class is set to 0 (false).

After all the classes have been created, the interpreter is called to execute the “initially”
action at all automaton instances whose automaton types have that action in their input sig-
natures. This serves to initialize the states of the automata. Following this, each class in the
system is checked to determine whether or not it contains an enabled action. That is, for each
class of each automaton instance, the interpreter is called to evaluate the precondition for each
action in the corresponding class of the automaton type definition. If any action in a class
instance is found to be enabled, then the enabled bit of that class is set to 1 (true). The sched-
uler, to be discussed in the next section, is informed of each class so enabled. This completes

the initialization procedure.
A high-level description of the execution loop is shown in Figure 4-1. At each iteration
through the loop, the scheduler is asked to produce the next class to take a step. (If no classes

contain enabled actions, the simulation terminates.) Then, an enabled action is chosen from

3The user interface reserves space in the configuration data structure for a single pointer to be used for this
purpose by the simulator.

64 CHAPTER 4. THE SPECTRUM SIMULATOR

create the automaton instance data structures and classes
execute the “initially” action at each automaton
determine the set of enabled classes and inform scheduler
while the set of classes containing enabled actions is nonempty
ask scheduler for the next class to perform an output
choose an enabled action from that class
execute the SEL clause to determine the arguments
determine the set of participant automata
for each participant,
produce a new state of that automaton based on the event
check invariants
determine the new set of enabled classes of that automaton
inform the scheduler of updates to the set of enabled classes
update the display, write to the trace file, etc.

Figure 4-1: Pseudocode for the execution loop.

that class. Since we are not required to be fair to the actions within classes, but only to
the classes themselves, we arbitrarily choose the first enabled action in the class. Then, the
selection clause (SEL) for that action is evaluated to determine the action argument. Following
this, the set of participants in the action is determined: for each automaton having that action
type in its input signature, the corresponding WHERE clause is evaluated; if it evaluates to
true, then that automaton is a participant in the action. For each participant, the EFF and
MAINTAIN clauses are evaluated to produce the new state of the automaton. At this point, any
invariants on the state are checked and the execution is interrupted if violations are discovered.
Since the state of each participant may change, the set of enabled classes of each participant is
recomputed, and the scheduler is informed of any changes.

At the end of each iteration, the user interface, presented in the next chapter, is informed
of both the action and the set of participants in order to update the display.* The simulator
also provides, for the user interface, functions that textually format the data types of the states
of automaton types, the values of the states of automaton instances, and the current action
name with its argument value. In addition, the simulator provides a function that extracts the

values of selected state components of automaton instances in order that the user interface may

*In fact, it is the user interface that requests each iteration of the loop, since the user may wish to interrupt
the simulation in order to study the states of automata, change the visualization, etc.

4.4. THE SCHEDULER 65

update the graphics display to reflect automaton state changes.

Additional features provided by the simulator include the generation of formatted trace
files containing schedules and selected state information, and the ability to back up or advance
the simulated execution to an arbitrary step number. If the trace file option is selected, at
the end of each iteration of the execution loop, the current step number, action name, and
selected state information are written to a file. In the next chapter, we will see how the user
specifies what state information is written to the file. In order to achieve more efficient rollback
of the simulation, the user may specify an autosave interval k, indicating that the state of
the automaton instances and the scheduler shouid be checkpointed after every k steps of the
execution. When the simulator is requested to roll back (or forward) to step number n, the
simulator reverts to the last checkpointed state prior to step n and then advances the simulation

to that step.

4.4 The Scheduler

It is the job of the scheduler to maintain a list of all classes containing enabled actions. and to
choose the next class to take a step at each iteration of the execution loop. This choice is made
according to a particular scheduling algorithm, selected by the user before simulation is begun.
In the current implementation of the simulator, there is a choice of two scheduling algorithms,
randomized and round robin.

The randomized scheduler makes use of the weights on each of the automaton classes. It
keeps track of the total t of the weights of all enabled classes, and at each step in the execution
selects a class with weight w with probability %. The round robin scheduler treats the list of
classes with enabled actions as a queue. It always selects the first class in the list and moves
that class to the end of the list. Newly enabled classes are always added to the end of the list.
Recall that the I/O automaton model’s fairness definition requires that if a class continually
contains an enabled action, then eventually an action occurs from that class. According to this
definition, the round robin scheduler guarantees fairness. The randomized scheduler, on the
other hand, only produces fair schedules with high probability.

The way that scheduling is accomplished in Spectrum constitutes a major difference between

the present work and related work in the area of discrete event simulation. In discrete event

66 CHAPTER 4. THE SPECTRUM SIMULATOR
simulation (see Misra [49]), an “events list™ is kept for all of the actions that should be simulated,
but have not yet occurred in the simulation. Each event in the system may cause new events
to be added to the events list. An important difference between the events list and the class
list maintained by our scheduler is that no event is removed from the events list until it occurs,
while events in an I/Q automaton system may cause actions to become disabled and thus cause
classes to be removed from the scheduler’s class list. In general, the semantics of the I/0
automaton mode] are such that any event may become disabled by the occurrence of other

events.

4.5 Summary

In this chapter, we described the four main components of the Spectrum simulator: the loader
the interpreter. the execution loop, and the scheduler. The simulator precisely implements the
semantics of the Spectrum programming language, and therefore captures the semantics of the
I/0 automaton model.

The simulator is extensible in several directions. One way to exploit the modularity of
the I/O automaton model would be to define built-in automaton types that are used by pro-
grams in the same way as user-defined automaton types, but are actually treated differently
by the system in order to perform low-level system functions. For example, one might have a
built-in automaton called a file manager that has input actions OPEN(fn,read/write,id),
GET-STRING(fd,len), PUT-STRING(fd,s,len), and CLOSE(fd), where fn is a file name,
read/write is a boolean value, id is an automaton id, fd is a file descriptor for an open
file. len is an integer length, and s is a string, and output actions RETURN(v,id) where v may
be a file descriptor, a character, an OK signal, or an error signal. The actions would have
the usual file operation semantics, and one could write a schedule module specification for this
automaton for use by programmers. However, under the covers, the internal implementation of
the automaton by the simulation system would be different. Rather than executing as an I1/0
automaton, input actions of the file manager would cause commands to be sent to a separate
UNIX process to execute the corresponding system call. Upon completion of the system call,
the appropriate output action of the file manager would become “enabled.” One might imagine

similar built-in automata to manage other system services such as print queues or even network

4.5. SUMMARY 67

connections, allowing the interaction of Spectrum programs on several machines.

One might also extend the simulator by adding a variety of schedulers. For example. the
deterministic variety might include, in addition to a round robin scheduler, a least-recently-
executed scheduler that gives the next turn to the class that has been waiting the longest to
take a step. The randomized variety might include, in addition to the current randomized
scheduler, those that dynamically change the weights of classes in order to produce “strange”
executions, possibly taking into account the number of steps that a class has been waiting to
take a step. A more radical extension, which would involve language extensions as well, would
be to allow programmers to write their own scheduling algorithm, or to provide “hints™ to
the scheduler. Such hints might be generated by a spectator automaton. taking into account
history information. Such algorithm-specific scheduling could be used in an adversarial way, to
try to generate executions that are incorrect or have poor performance. In Chapter 6, we will
consider still other possibilities for improvements in the scheduling mechanism, including user
intervention and a real-time scheduler.

As another improvement to the simulator, we suggest an optimization for updating the
set of enabled classes at each iteration through the execution loop. Since action preconditions
typically do not involve all the state components of an automaton, and since each state transition
typically does not change all the state components of an automaton, we suggest the following.
Let the loader mark each precondition with a concise representation (a bit vector, say) of
the state components on which it depends. Then, when an automaton takes a step, compare
the state components that have changed to this bit vector for each precondition, and only
reevaluate those preconditions that depend upon changed state components. This optimization
requires a small amount of additional storage to hold the current values of the preconditions for
each automaton, but, depending on the algorithm being simulated, could result in a significant
savings in simulation time.

In this discussion, we have identified some possibilities for extensions and improvements to
the simulator that are largely independent of the language and the user interface. In Chapter 6,
we will discuss possible extensions to the Spectrum Simulation System that involve all three

system components.

68

CHAPTER 4. THE SPECTRUM SIMULATOR

Chapter 5

The Spectrum User Interface

This chapter describes the user interface of the Spectrum Simulation System. The user interface
has two purposes. It is used to build configurations of automaton systems, and to control
simulation and visualization of those systems.

To simulate an algorithm in Spectrum, one first specifies the various automaton types of the
system using the Spectrum language. Then, one graphically constructs a system configuration
(of the sort described in Section 3.2). In configure mode, the user interface provides tools for
building and editing a system configuration. Icons of different shapes are used to represent
the different automaton types. In configuring I/O automaton systems, one uses the mouse
to create instances of automaton types, connect them with directed edges, and arrange them
spatially. Other editing options include assigning names to automaton instances (apart from
the system-supplied automaton id), deleting instances and edges, and changing the type of
an instance. Also, one may undo and redo modifications to the configuration. An important
configuration option is the ability to build new automaton types by composing others. All of
the above editing options are available for creating composed types, as well.

Having specified a set of automaton types and a configuration, one can run simulations
of the I/O automaton system in simulate mode of the user interface. As actions occur in the
system, participating automata are highlighted and state changes are displayed using color and
text. In order to provide flexible exploration of algorithms, the choice of state components to
be represented as colors may be changed during simulation. Also, one can view the simulation

at various levels of detail by selectively opening up windows onto the automaton instances at

69

70 CHAPTER 5. THE SPECTRUM USER INTERFACE

any level in the composition hierarchy. To facilitate close study of algorithms, the user interface
allows one to invoke special simulator functions. For example, one may roll back or advance the
execution to any arbitrary step number, and may generate a trace file containing the schedule
(sequence of actions) of the execution and selected state information. Errors, such as violations
of local state invariants, interrupt the simulation so that the user may explore possible causes.

The interface is written in standard C [34] on top of the X11 window system [56] and requires
four color planes. The current implementation runs on DEC Microvaxes. A three-button mouse

is used for most interface commands.

5.1 Overview of the Spectrum Interface

The main window of the Spectrum interface consists of, from top to bottom, a banner, a pulldoun
menu bar, a configuration area, a set of three menus, and a message area. The left edge of the
banner shows the name of the automaton types file currently loaded into the simulation system,
and the right edge of the banner shows the name of the configuration file that was last loaded.

The pulldown menu bar contains three entries, “SET UP,” “CONFIGURE,” and “SIMU-
LATE.” At all times, one of the latter two entries is highlighted to indicate whether the interface
is in configure mode or simulate mode. The set up menu is used for file management, and the
simulate menu for selecting among various simulation options, such as the choice of a scheduler.
The configure menu is intended to be used for special-purpose configuration options, such as
enforcing acylicity in the instance graph when this is a desired topology assumption. However,
the configure menu is unused in the current implementation. The largest area of the main win-
dow, the configuration area, shows the configuration currently loaded into the interface. Undo
and redo buttons are available at the upper left of the configuration area.

The three rectangular areas near the bottom of the screen are, clockwise, the types menu,
the edit menu, and the color spectrum. These are explained later. The message area across
the bottom of the main window is used for providing textual information to the user, and for
keyboard interaction.

In addition to the main window, various guziliary windows may be created. In configure
mode, auxiliary windows are used to create composed types and to set up algorithm visualiza-

tion. In simulate mode, they are used to display automaton state information. We will describe

5.2. CONFIGURE MODE 71

these in detail later in the chapter.

5.2 Configure Mode

Recall that a configuration specifies, for each automaton in the system, the type of that automa-
ton, a unique system-supplied identifier and a user-supplied name, a set of adjacent edges in a
directed graph, and a parent in the composition hierarchy. In configure mode. the Spectrum
interface provides tools for creating and editing configurations graphically. One may also spec-
ify “summary mappings” in configure mode; these mappings associate the colors of automaton
instance icons with the values of the state components of those instances. Summary mappings
are specified in configure mode in preparation for visualization of algorithm executions. How-
ever, one is free to change summary mappings during simulation, as well. The remainder of

this section describes the options available in configure mode.

5.2.1 The Types Menu

In the Spectrum interface, automaton types are represented graphically as different shapes.
The types menu near the bottom of the main window contains a row of icons, each available
to represent a different automaton type. At any time, exactly one entry of the types menu is
selected, shown as a filled polygon. The selected entry is used for the “create” and “change
type” edit options (see Section 5.2.3). One can assign a name to each icon in the types menu; if
an icon’s name matches an automaton type definition in the currently loaded automaton types
file, then that icon is used to represent automata of that type.

Any entry in the types menu may be “opened,” causing the creation of a new window. The
upper right of the new window contains the icon and name of the opened type. If the name
of the menu entry matches the name of an automaton type defined in the currently loaded
types file, then the new window displays, in formatted text, the data type of the state of that
automaton type. Otherwise, the new window is used for creating (or modifying) a composed
type (see Section 5.2.5). In either case, the new window may be used to define summary

mappings (see Section 5.2.6).

72 CHAPTER 5. THE SPECTRUM USER INTERFACE
5.2.2 The Edit Menu

Almost all modifications of the configuration are accomplished using the options in the edit
menu, located near the bottom right of the main window. Using the edit menu options, one
can create automaton instances, delete or move them, or change their types. In addition,
one can use the connect and disconnect options to create and delete directed edges between
automaton instances. Edit options are useful not only for specifying a configuration, but also
for creating natural spatial arrangements of the automaton instances so that simulations may
be more easily comprehended. At any given time, exactly one entry in the edit menu is selected:
this entry is highlighied in a special color.

Since an edit option remains selected after its use, one may repeatedly use an edit option
without returning the mouse to the edit menu. For example, one can delete many automaton
instances by simply selecting delete, and then choosing each instance to be deleted. The edit

menu options are discussed further in the following sections.

5.2.3 Automaton Instances

To create an automaton instances of a given type, one selects the create option in the edit menu
and the desired automaton type in the types menu, and then positions the desired instances in
the configuration area. To delete automaton instances, one selects the delete edit option and
chooses the instances to be deleted. The edit options for moving and changing the type of an
instance work similarly.

When an automaton instance is created, it is assigned a uniqué automaton identifier, which
appears below the icon as its name. One may rename an automaton instance , but changing the
name of an automaton does not change its unique identifier. Both the system-assigned identifier
and the user-defined name are accessible in automaton type definitions (see Chapter 3).

If an automaton is an instance of a composed type (see Section 5.2.5), it may be “opened” in
configure mode. One may rename the components of an instance of a composed type. However,
no other modifications of instance components are permitted, in order to ensure consistency
among all automata of the same type. For example, one cannot create a new component in just

one instance of a composed type.

5.2. CONFIGURE MODE 73
5.2.4 Configuration Edges

Automaton instances may be connected in a directed graph. The edges are useful for break-
ing symmetry, defining communication patterns, or establishing other relationships between
automata. The sets of incoming and outgoing edges of automaton instances are accessible in
automaton type definitions (see Chapter 3).

To place edges between pairs of automaton instances, one selects the connect edit option
and selects the pair of automaton instances for each desired edge. A directed edge is formed
from the first instance in each pair to the second. To delete an edge, one selects the disconnect

edit option and selects the two endpoints in the same way.

5.2.5 Creating Composed Types

It is often desirable to define an automaton type that is the composition of several other automa-
ton types. For example, one might model an asynchronous system by associating a message
buffer automaton with each user process automaton. Rather than explicitly creating each pair
of automaton instances, one might define a new automaton type that is the composition of a
user process automaton and a message buffer automaton.

To create a composed type, one assigns the desired type name to an unused shape in the
types menu and opens that type, as described in Section 5.2.1. The new window created may be
used just like the configuration area in the main window. To create the composed type described
in the preceding paragraph, one would use the create edit option to create one “instance” of the
user process automaton type and one “instance” of the message buffer automaton type inside
the window for the composed type. Each inztance of the composed type is then the composition
of instances of those two automaton types.

All of the edit menu options are available for creating composed types. For example, one
may create a composed type containing several “instances” of another type arranged in a
particular directed graph. One may create instances of an automaton type before that type is
(fully) defined. Whenever a composed type is defined or modified, the changes are immediately
reflected in all instances of that type. Hierarchical composition is supported; components of
a composition may be compositions themselves. However, it is illegal to create recursive type

definitions. For example, if type A is the composition of types B and C, then neither B nor C

74 CHAPTER 5. THE SPECTRUM USER INTERFACE

may have A as a component.

5.2.6 Summary Mappings

During simulation, colors are used to display the values of important components of an au-
tomaton’s state. One might say that certain state components summarizing the state of the
automaton are “mapped” to colors of the icon representing the automaton. These summary
mappings may be established at configuration time, but may also be changed during simulation.
Each instance icon is divided into two parts, a border and a center. One may map a single state
component to both the border and center, or may map a different state component to each.
Both integer and boolean state components may be mapped as colors. The MAINTAIN clause

(see Chapter 3) is useful for updating state components that are used in summary mappings.

Summary mappings are established for an entire automaton type, rather than on an instance
by instance basis. This tends to make the visualization easier to understand. When setting
up summary mappings for a composed type, one may choose the middle or border of any
component as the state component to be mapped out. For example, if A is the composition of
B and C, one may wish to map the middle of B to the middle of A, and map the border of C to
the border of A. Then, during simulation, whatever state component is mapped to the border

of C will also map to the border of A.

5.2.7 Undo and Redo

All of the functions provided in the edit menu, plus changes to summary mappings, may be
“undone” by using the undo button in the window where the modification was performed.
For example, to undo a modification to a composed type, one uses the undo button in the
window for that type. The undo feature is “infinite,” meaning that one may undo changes all
the way back to the beginning of the current session. (A new session begins when the interface
is started and whenever a configuration file is loaded.) A “redo” option is available for redoing

modifications just undone.

5.2. CONFIGURE MODE

=1
(1]}

5.2.8 Saving and Loading Files

The setup menu option load typesis used toload an automaton types file written in the Spectrum
programming language. The simulator does parsing and type-checking, and sets up the
appropriate data structures for the interpreter. If syntax errors, type errors, or other problems
occur while reading the file, an error message appears at the bottom of the main window and
a description of the errors is output by the simu:ator. (See Chapter 4 for details.)

The save configuration option in the setup menu is used to save a configuration in a file for
a later session. The entire configuration, including composed types 2nd summary mappings.
is saved in the file named. The load configuration option is used to load a previously saved
configuration. On loading a configuration, the interface checks that the summary mappings
in the configuration file properly correspond to the automaton types currently loaded. For
example, it checks that if the first state component is used in the summary mapping, then
that component has type integer or boolean. Each summary manping that does not match up
properly is discarded. Since these compatibility checks are made only when a configuration file
is loaded (and not when an automaton types file is loaded), one must load the types file before
creating a configuration or loading a configuration file.

The fact that automaton types files and configuration files are saved independently means
that a given types file can be used with many configuration files, or many types files with a given
configuration file. When the latter arrangement is used, one may need to change the summary

mappings for different types files when the antomaton state components have different types.

5.2.9 Data Structures

In configure mode, the user interface builds and maintains data structures to represent the
system configuration. Its main data structure is a table indexed by automaton id that holds
the configuration data relevant to that automaton (its type, its user-supplied name, its parent in
the composition hierarchy, a list of the automaton id’s of its components (if it is an instance of
a composed type), and lists of its incoming and outgoing edges), as well as information relevant
to the display of the icon representing that automaton (the id for the X window containing the
icon, the icon’s color(s) and position in that window, and the id for the associated auxiliary

window if one has been created). In addition, for each automaton instance, space (for a single

76 CHAPTER 5. THE SPECTRUM USER INTERFACE
pointer) is reserved for the simulator to associate state and class information with each instance.
Similar information is kept for automaton types, and in particular for composed types. In
simulate mode, configuration information (including the pointer reserved for the simulator) is

made available to the simulator through a narrow interface of procedure calls and macros.

5.3 Simulate Mode

Simulate mode is used for running simulations. In this section, we describe how the interface
is used to invoke the various features of the simulator. For details on the simulator itself, see
Chapter 4. We begin by discussing the options available in the simulate menu, and then

describe what happens in the interface during a running simulation.

5.3.1 The Simulate Menu

With the exception of the scheduling options, all options in the simulate menu are available in
simulate mode. (Since it is not permissible to change schedulers in the middle of a simulation,
the scheduler must be selected prior to entering simulate mode.) The following options are

available in the simulate menu.

Simulation Control Options: If single step is selected, the user advances the simulation
one step at a time. If continuous is selected, the simulation runs to completion or until

it is interrupted by the user or by an invariant violation.

Scheduling Options: The choices are randomized or round robin. See Chapter 4 for a

description of these schedulers.

Set Pause: Using this option, one can specify a pause (in seconds) between the steps of a

continuous simulation.

Set Skip: This option is used to instruct the interface to update the display only after every

n steps, where n is the skip value chosen.

Autosave: The user may set an autosave value of n, which causes the simulator to checkpoint

the state of the simulation every n steps. A low (non-zero) value of n makes undo and

5.3. SIMULATE MODE 77
redo faster, but slows down the simulation (see Section 5.3.4). If the autosave value is

zero, then autosave is turned off.

Trace: This option may be used to specify a trace file. See Section 5.3.6 for a description of

what is written to a trace file.

5.3.2 The Running Simulation

On entering simulate mode, the automaton instances are initialized and the simulation is paused
just before the first step. As the simulation runs, the display is updated as follows. After each
step of the execution, provided that the simulator is in single-step mode or that the pause
value is at least one second, the borders around the set of automata involved in that step
are highlighted (red for output and blue for input) and the action name with its argument
value is displayed in the message area. In addition, the colors of the automaton instance icons
are updated according to the summary mappings, and any open state windows are updated.
The icon colors and state value displays are updated in both single-step and continuous mode,
regardless of the pause value. However, when the skip value is nonzero, all display updates take
place only after the specified number of steps. Similarly, no display updates take place for the
intermediate states that occur while the simulation is being advanced or undone to a particular
step number, but the display is updated once the desired state has been reached. Whenever

the simulation is paused, it is possible to:

resume the simulation,

e abort the simulation and return to configure mode,

¢ select options from the simulate menu (except changing the scheduling option),
e open entries in the types menu to change the summary mappings,

e open automaton instances to view their components (in the case of compositions) or to

view the values of their state variables,
¢ roll back the simulation to some earlier step number, or

o advance the simulation to some later step number.

78 CHAPTER 5. THE SPECTRUM USER INTERFACE
We have already discussed the simulate menu options (Section 5.3.1) and summary mappings
(Section 5.2.6). In the following sections, we discuss viewing automaton instance state variables,

rolling back and advancing the simulation, error messages, and trace file.

5.3.3 State Windows

Taking advantage of the structure provided by I/O automaton composition, the Spectrum in-
terface allows one to “look inside” an automaton to see its components. This allows one to view
algorithm simulations at different levels of detail. During simulation, any automaton instance
may be opened. If the automaton is an instance of a composed type, then the auxiliary window
created contains its components, colored according to their summary mappings. However, if
the automaton is an instance of a type explicitly defined in the automaton types file. then the
window created, called a state window, contains a textual display of the values of the state
variables. As described earlier, all state information (whether graphical or textual) is updated

as the simulation runs.

5.3.4 Execution Rollback

In understanding an algorithm, it is often useful to observe the events that led up to a particular
state. Therefore, the simulator provides the ability to roll back the simulation to a particular
step. Like all simulator functions, the rollback/advance option is controlled with the user
interface, which allows the user to select a particular step number to return to (or advance
to). To support this feature, the simulator checkpoints the states of the automata, the
scheduler, and the seed of the random number generator at the beginning of the execution
and periodically according to the interval selected with the autosave option in the simulate
menu. If the checkpoints occur frequently, rollback will be fast. On the other hand, very
frequent checkpointing wastes memory space and slows down the simulation. One may change

tne checkpoint interval whenever the simulation is paused.

5.3.5 Error Messages During Simulation

Two different types of error messages may occur during simulation. Both are reported on the

Unix standard error file and in the trace file (if one is open). The first type of error is program

54. SUMMARY 79
error, such as an attempt to select a random element from an empty set, or an attempt to divide
by zero. The second type of error is the violation of a specified invariant of an automaton. In
either case, the automaton name and id at which the error occurred. along with the action
name and arguments, are reported with the error message. Violation of an invariant causes the
simulation to become paused so that the user may examine the state of the system and roll

back the simulation in order to discover the source of the error.

5.3.6 Trace Files

If a trace file is specified, the following information is appended to it by the simulator. At the
start of the simulation, the seed for the random number generator is recorded in the trace file
so that the execution may be reproduced later. After each step, the step number and the action
name (with its arguments) are written. Whenever a state window is opened or updated, the
values of the state variables of that automaton are recorded in the trace file. In this way, the
states of the automata of interest are recorded automatically without cluttering the trace file
with extra state information. All error messages (both program errors and invariant violations)
are written to the trace file. Finally, whenever the execution is rolled back or advanced to some

particular step number, that information is also recorded.

5.4 Summary

The Spectrum user interface provides features for constructing system configurations, creating
summary mappings, and controlling and observing algorithm executions. An important pur-
pose of the Spectrum user interface is to provide support for experimentation with algorithms.
Configuration files are created, edited, and saved independently of automaton types files so
that one may use many different configurations with a given set of automaton types, and vice
versa. Also, the summary mappings used for algorithm visualization are created easily and
may be changed easily during algorithm simulation for maximum flexibility in observing algo-
rithm executions. In addition, the composition hierarchy is exploited to allow users to observe
algorithms at various levels of detail.

In Chapter 6, we will discuss a number of ways in which Spectrum’s support for experimen-

80 CHAPTER 5. THE SPECTRUM USER INTERFACE

tation could be enhanced. In addition. Gupta [25} makes a number of specific suggestions for

improving user interaction in Spectrum.

Chapter 6

System Evaluation

In the previous chapters, we presented the three main components of the Spectrum Simulation
System: the programming language for defining automaton types, the simulator for generating
executions of automaton systems. and the user interface for building automaton system config-
urations and controlling simulation and visualization. In each chapter, we pointed out features
of the design that were motivated by the design goals outlined in Chapter 1.

In this chapter, we use these design goals to evaluate the system as a whole. First, in
Section 6.1, we compare Spectrum with a number of related languages and simulation systems.
Then, in Section 6.2, we conduct a thorough evaluation of Spectrum in terms of the design goals,
taking into account the comparisons drawn in Section 6.1, as well as our own experience using
Spectrum and the experiences of other Spectrum users. For each design goal, we review those
aspects of the system that were designed to help achieve the goal, and consider how successful
these actually were. In the course of this evaluation, we suggest a number of possible directions
for further work. The evaluation will motivate the research presented in the remaining chapters<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>